切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2016, Vol. 02 ›› Issue (05) : 305 -312. doi: 10.3877/cma.j.issn.2095-9141.2016.05.011

所属专题: 文献

专题笔谈

小胶质细胞在中枢神经系统创伤后的双重作用及调控机制
党圆圆1, 张洪钿1, 徐如祥1,()   
  1. 1. 100700 北京,陆军总医院附属八一脑科医院
  • 收稿日期:2016-04-21 出版日期:2016-10-15
  • 通信作者: 徐如祥

The dual function of microglia and their regulatory mechanisms after central nervous system injury

Yuanyuan Dang1, Hongtian Zhang1, Ruxiang Xu1,()   

  1. 1. Affiliated Bayi Brain Hospital, The Military General Hospital, Beijing 100700, China
  • Received:2016-04-21 Published:2016-10-15
  • Corresponding author: Ruxiang Xu
  • About author:
    Corresponding author: Xu Ruxiang, Email:
引用本文:

党圆圆, 张洪钿, 徐如祥. 小胶质细胞在中枢神经系统创伤后的双重作用及调控机制[J/OL]. 中华神经创伤外科电子杂志, 2016, 02(05): 305-312.

Yuanyuan Dang, Hongtian Zhang, Ruxiang Xu. The dual function of microglia and their regulatory mechanisms after central nervous system injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2016, 02(05): 305-312.

小胶质细胞是中枢神经系统的固有免疫细胞,在脑或脊髓创伤后的神经炎症反应中起关键作用。神经系统损伤后小胶质细胞可提供神经保护因子,清除细胞碎片并调控神经修补过程。而另一方面,小胶质细胞会产生高水平的促炎及细胞毒性介质从而阻碍CNS修复,促使神经元失能及细胞死亡。小胶质细胞的双重特性可能与其损伤后的表型及功能反应有关。本综述探讨近年来有关脑和脊髓损伤后小胶质细胞活化表型的研究,以及小胶质细胞在神经元、血管、少突胶质细胞生长及再生中的可能发挥的作用。并简述已知的调控表型转换的分子机制,着重探讨可以影响小胶质细胞活化状态的治疗途径。了解小胶质细胞表型调控机制有助于我们增加神经系统损伤恢复的知识,并提供新的治疗策略。

Microglia is the innate immunocyte in the central nervous system, playing an important role in neuroinflammations after brain or spinal cord injury. By providing neurotrophic factors and removing cellular debris microglia can regulate nervous repair. However, high levels of pro-inflammation and neurotoxic factors produced by microglia hinder the CNS repair, and prompt neuron incapacity and cell death. The dual nature of microglia is related to their diverse phenotypes after injury. In this review, we focus on recent researches about the phenotypes of activated microglia after brain or spinal cord injury, as well as their effects on neurogenesis, oligodendrogenesis, and angiogenesis. The molecular signals controlling the switch of the phenotypes are discussed. We also highlight the possible therapeutic pathways which can change the activation statements of microglia. Better understanding of mechanisms regulating microglia phenotypes may contribute to our knowledge about repair and restoration of the nervous system, and provide new therapeutic strategies.

[1]
Faden AI, Loane DJ. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation[J]? Neurotherapeutics, 2015, 12(1): 143-150.
[2]
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention[J]. Brain Behav Immun, 2012, 26(8): 1191-1201.
[3]
Butovsky O, Jedrychowski MP, Moore CS, et al. Identification of a unique TGF-beta dependent molecular and functional signature in microglia[J]. Nat Neurosci, 2014, 17(1): 131-143.
[4]
Kierdorf K, Erny D, Goldmann T, et al. Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways[J]. Nat Neurosci, 2013, 16(3): 273-280.
[5]
Elmore MR, Najafi AR, Koike MA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain[J]. Neuron, 2014, 82(2): 380-397
[6]
Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated[J]. Exp Neurol, 2016, 275 Pt 3: 316-327.
[7]
Salter MW, Beggs S. Sublime microglia: expanding roles for the guardians of the CNS[J]. Cell, 2014, 158(1): 15-24.
[8]
Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain[J]. Nat Neurosci,2007, 10(11): 1387-1394.
[9]
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122(3): 787-795.
[10]
Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain[J]. J NeuroImmune Pharmacol, 2009, 4(4): 399-418.
[11]
Filardy AA, Pires DR, Nunes MP, et al. Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages[J]. J. Immunol, 2010, 185(4): 2044-2050.
[12]
Novak ML, Koh TJ. Phenotypic transitions of macrophages orchestrate tissue repair[J]. Am J Pathol, 2013, 183(1): 1352-1363.
[13]
Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and antiinflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury[J]. Neurotherapeutics, 2010, 7(1): 22-30.
[14]
Rhodes J. Peripheral immune cells in the pathology of traumatic brain injury[J]? Curr Opin Crit Care, 2011, 17(2): 122-130.
[15]
Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior[J]. Science, 2007, 317: 666-670.
[16]
Hsieh CL, Kim CC, Ryba BE, et al. Traumatic brain injury induces macrophage subsets in the brain[J]. Eur J Immunol, 2013, 43(8): 2010-2022.
[17]
Walsh JT, Watson N, Kipnis J. T cells in the central nervous system: messengers of destruction or purveyors of protection[J]? Immunology, 2014, 141(3): 340-344.
[18]
Acosta SA, Tajiri N, Shinozuka K, et al. Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model[J]. PLoS One, 2013, 8(1): e53376.
[19]
Loane DJ, Kumar A, Stoica BA, et al. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation[J]. J Neuropathol Exp Neurol, 2014, 73: 14-29.
[20]
Mouzon BC, Bachmeier C, Ferro A, et al. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model[J]. Ann Neurol, 2014, 75(2): 241-254.
[21]
Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansionafter focal cerebral ischemia[J]. Stroke, 2012, 43(1): 3063-3070.
[22]
Kigerl KA, Gensel JC, Ankeny DP, et al. Identification of two distinct macrophage subsets with divergent effects causing eitherneurotoxicity or regeneration in the injured mouse spinal cord[J]. J Neurosci, 2009, 29: 13435-13444.
[23]
Jin X, Ishii H, Bai Z, et al. Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice[J]. PLoS One, 2012, 7: e41892.
[24]
Wang, G, Zhang J, Hu X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb[J]. Blood Flow Metab, 2013, 33(12): 1864-1874.
[25]
Morganti JM, Jopson TD, Liu S, et al. CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury[J]. J Neurosci, 2015, 35(2): 748-760.
[26]
Dalgard CL, Cole JT, Kean WS, et al. The cytokine temporal profile in rat cortex after controlled cortical impact[J]. Front Mol Neurosci, 2012, 5: 6.
[27]
Hsieh CL, Niemi EC, Wang SH, et al. CCR2 deficiency impairs macrophage infiltration and improves cognitive function after traumatic brain injury[J]. J Neurotrauma, 2014, 31(20): 1677-1688.
[28]
Gensel JC, Zhang B. Macrophage Activation and its Role in Repair and Pathology After Spinal Cord Injury[J]. Brain Res, 2015, 1619: 1-11.
[29]
Fenn AM, Gensel JC, Huang Y, et al. Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia[J]. Biol Psychiatry, 2014, 76(7): 575-584.
[30]
Tam WY, Ma CH. Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes[J]. Sci Rep, 2014, 4: 7279.
[31]
Kumar A, Stoica BA, Sabirzhanov B, et al. Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states[J]. Neurobiol Aging, 2013, 34(5): 1397-1411.
[32]
Norden DM, Muccigrosso MM, Godbout JP. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury and neurodegenerative disease[J]. Neuropharmacology, 2015, 96(Pt A): 29-41.
[33]
Wilcock DM. Neuroinflammatory phenotypes and their roles in Alzheimer’s disease[J]. Neurodegener Dis, 2014, 13(2-3): 183-185.
[34]
Fenn AM, Hall JC, Gensel JC, et al. IL-4 signaling drives a unique arginase+/IL-1beta+ microglia phenotype and recruits macrophages to the inflammatory CNS: consequences of age-related deficits in IL-4Ralpha after traumatic spinal cord injury[J]. J Neurosci, 2014, 34(26): 8904-8917.
[35]
Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia[J]. Neuroscience, 2009, 158(3):1021-1029.
[36]
Choi YS, Cho HY, Hoyt KR, et al. IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus[J]. Glia 2008, 56(7): 791-800.
[37]
Gao X, Chen J. Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus[J]. Exp Neurol, 2013. 239: 38-48.
[38]
Carlson SW, Madathil SK, Sama DM, et al. Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury[J]. J Neuropathol Exp Neurol, 2014, 73(8): 734-746.
[39]
Jetten N, Verbruggen S, Gijbels MJ, et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo[J]. Angiogenesis, 2014, 17: 109-118.
[40]
Zajac E, Schweighofer B, Kupriyanova TA, et al. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9[J]. Blood, 2013, 122(5): 4054-4067.
[41]
Wang G, Shi Y, Jiang X, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3beta/PTEN/Akt axis[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2853-2858.
[42]
Hooten KG, Beers DR, Zhao W, et al. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. neurotherapeutics[J]. 2015;12(2):364-75.
[43]
Ma SF, Chen YJ, Zhang JX, et al. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury[J]. Brain Behav Immun, 2015, 45: 157-170
[44]
Gao S, Mao F, Zhang B, et al. Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-kappaB and signal transducer and activator of transcription 3 pathways[J]. Exp Biol Med, 2014, 239(3): 366-375.
[45]
Thal SC, Heinemann M, Luh C, et al. Pioglitazone reduces secondary brain damage after experimental brain trauma by PPAR-gammaindependent mechanisms[J]. J Neurotrauma, 2011, 28(6): 983-993.
[46]
Loane DJ, Stoica BA, Byrnes KR, et al. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury[J]. J Neurotrauma, 2013, 30(5): 403-412.
[47]
Wang G, Shi Y, Jiang X, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3beta/PTEN/Akt axis[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2853-2858.
[1] 郁慧杰. 科学、高效、规范——嘉兴区域严重创伤救治体系建设经验[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 1-.
[2] 奚卫, 王闻卿, 刘玥, 王亚楠, 许学斌. 胃肠炎继发脓毒症感染创伤弧菌ST14514的病原学诊断与文献病例回顾分析[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 293-302.
[3] 张腾花, 尚培中, 王晓梅, 李晓武, 王金, 苗建军, 刘冰. 外伤性脾破裂三阶梯分层治疗策略[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 510-512.
[4] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[5] 潘冬生, 梁国标. 颅脑创伤治疗的最新进展与未来趋势[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 193-197.
[6] 汤畅通, 王永楠, 王诗筌. 颅脑外伤后阵发性交感神经兴奋患者的药物治疗效果分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 233-237.
[7] 肖丹, 陈辰, 查晔军, 公茂琪, 花克涵, 孙伟桐, 蒋协远. 改良松解术治疗创伤后肘关节僵硬的疗效及危险因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 257-263.
[8] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
[9] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[10] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[11] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[12] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
[13] 临床多学科协作专家组. 腹盆部创伤急诊CT 专家推荐指南(2024)[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 222-229.
[14] 田峰瑞, 蒋锦源, 李阳, 张连阳. Morel-Lavallée 损伤继发血清肿一例[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 245-248.
[15] 陈念, 张连阳. 严重创伤救治中全血输注进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 145-148.
阅读次数
全文


摘要