切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2016, Vol. 02 ›› Issue (03) : 168 -172. doi: 10.3877/cma.j.issn.2095-9141.2016.03.012

所属专题: 文献

专题笔谈

脑源性神经营养因子在中枢神经系统损伤中的多种神经保护作用及其机制的研究进展
籍新潮1, 徐如祥1,()   
  1. 1. 100700 北京,陆军总医院附属八一脑科医院
  • 收稿日期:2015-08-17 出版日期:2016-06-15
  • 通信作者: 徐如祥

Research progress of multiple neuroprotective effects of brain-derived neurotrophic factor after central nervous system injury and its mechanism

Xinchao Ji1, Ruxiang Xu1,()   

  1. 1. Department of Neurosurgery, Bayi Brain Hospital Affiliated to the PLA Army General Hospital, Beijing 100700, China
  • Received:2015-08-17 Published:2016-06-15
  • Corresponding author: Ruxiang Xu
  • About author:
    Corresponding author: Xu Ruxiang, Email:
引用本文:

籍新潮, 徐如祥. 脑源性神经营养因子在中枢神经系统损伤中的多种神经保护作用及其机制的研究进展[J]. 中华神经创伤外科电子杂志, 2016, 02(03): 168-172.

Xinchao Ji, Ruxiang Xu. Research progress of multiple neuroprotective effects of brain-derived neurotrophic factor after central nervous system injury and its mechanism[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2016, 02(03): 168-172.

中枢神经系统损伤后脑源性神经营养因子(BDNF)可以通过多种机制发挥其神经保护作用,如抑制神经元及少突胶质细胞的凋亡,促进神经突触的生长和轴突再生,促进髓鞘再生,以及调节损伤后的免疫反应和神经兴奋性等。本文主要综述了BDNF在神经保护中可能的分子机制,以进一步明确其在神经治疗中的应用价值。

Brain-derived neurotrophic factor(BDNF) has multiple neuroprotective effects after central nervous system injury, such as inhibiting apoptosis of neurons and oligodendrocytes, promoting the growth of synapse and the regeneration of axon, promoting the regeneration of myelin sheath, adjusting the immune response and nerve excitability after injury, and so on. This article reviewed the possible molecular mechanisms of the neuroprotective effect of BDNF, in order to indentify its application value in the clinic treatment.

[1]
Hantzopoulos PA,Suri C,Glass DJ, et al. The low affinity NGF receptor, p75, can collaborate with each of the Trks to potentiate functional responses to the neurotrophins[J]. Neuron, 1994, 13(1): 187-201.
[2]
Klein R,Nanduri V,Jing SA, et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3[J]. Cell, 1991, 66(2): 395-403.
[3]
Squinto SP,Stitt TN,Aldrich TH, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor[J]. Cell, 1991, 65(5): 885-893.
[4]
Klein R,Smeyne RJ,Wurst W, et al. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death[J]. Cell, 1993, 75(1): 113-122.
[5]
Lamballe F,Klein R,Barbacid M. The trk family of oncogenes and neurotrophin receptors[J]. Princess Takamatsu Symp, 1991, 22: 153-170.
[6]
Soppet D,Escandon E,Maragos J, et al. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor[J]. Cell, 1991, 65(5): 895-903.
[7]
Glass DJ,Nye SH,Hantzopoulos P, et al. TrkB mediates BDNF/NT-3-dependent survival and proliferation in fibroblasts lacking the low affinity NGF receptor[J]. Cell, 1991, 66(2): 405-413.
[8]
Marsh HN,Scholz WK,Lamballe F, et al. Signal transduction events mediated by the BDNF receptor gp 145trkB in primary hippocampal pyramidal cell culture[J]. J Neurosci, 1993, 13(10): 4281-4292.
[9]
Plotkin JL,Day M,Peterson JD, et al. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington′s disease[J]. Neuron, 2014, 83(1): 178-188.
[10]
Dolcet X,Egea J,Soler RM, et al. Activation of phosphatidylinositol 3-kinase, but not extracellular-regulated kinases, is necessary to mediate brain-derived neurotrophic factor-induced motoneuron survival[J]. J Neurochem, 1999, 73(2): 521-531.
[11]
Lindholm D,Dechant G,Heisenberg CP, et al. Brain-derived neurotrophic factor is a survival factor for cultured rat cerebellar granule neurons and protects them against glutamate-induced neurotoxicity[J]. Eur J Neurosci, 1999, 5(11): 1455-1464.
[12]
Kaplan DR,Miller FD. Neurotrophin signal transduction in the nervous system[J]. Curr Opin Neurobiol, 2000, 10(3): 381-391.
[13]
Curtis R,Adryan KM,Stark JL, et al. Differential role of the low affinity neurotrophin receptor (p75) in retrograde axonal transport of the neurotrophins[J]. Neuron, 1995, 14(6): 1201-1211.
[14]
McKay SE,Garner A,Caldero J, et al. The expression of trkB and p75 and the role of BDNF in the developing neuromuscular system of the chick embryo[J]. Development, 1996, 122(2): 715-724.
[15]
Rostami E,Krueger F,Plantman S, et al. Alteration in BDNF and its receptors, full-length and truncated TrkB and p75(NTR) following penetrating traumatic brain injury[J]. Brain Res, 2014, 1542: 195-205.
[16]
Enomoto M,Bunge MB,Tsoulfas P. A multifunctional neurotrophin with reduced affinity to p75NTR enhances transplanted Schwann cell survival and axon growth after spinal cord injury[J]. Exp Neurol, 2013, 248: 170-182.
[17]
Brito V,Puigdellívol M,Giralt A, et al. Imbalance of p75(NTR)/TrkB protein expression in Huntington’s disease: implication for neuroprotective therapies[J]. Cell Death Dis, 2013, 4(18): e595.
[18]
Chapleau CA,Pozzo-Miller L. Divergent roles of p75NTR and Trk receptors in BDNF′s effects on dendritic spine density and morphology[J]. Neural Plast, 2012, 2012: 578057.
[19]
Je HS,Yang F,Ji Y, et al. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions[J]. J Neurosci, 2013, 33(24): 9957-9962.
[20]
Yang F,Je HS,Ji Y, et al. Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses[J]. J Cell Biol, 2009, 185(4): 727-741.
[21]
Novikova L,Novikov L,Kellerth JO. Brain-derived neurotrophic factor reduces necrotic zone and supports neuronal survival after spinal cord hemisection in adult rats[J]. Neurosci Lett, 1996, 220(3): 203-206.
[22]
Kishino A,Ishige Y,Tatsuno T, et al. BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth[J]. Exp Neurol, 1997, 144(2): 273-286.
[23]
Novikova LN,Novikov LN,Kellerth JO. Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration[J]. Eur J Neurosci, 2000, 12(2): 776-780.
[24]
Liu Y1,Himes BT,Murray M, et al. Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy[J]. Exp Neurol, 2002, 178(2): 150-164.
[25]
Blits B,Oudega M,Boer GJ, et al. Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function[J]. Neuroscience, 2003, 118(1): 271-281.
[26]
Coumans JV,Lin TT,Dai HN, et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins[J]. J Neurosci, 2001, 21(23): 9334-9344.
[27]
Kwon BK,Liu J,Messerer C, et al. Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury[J]. Proc Natl Acad Sci USA, 2002, 99(5): 3246-3251.
[28]
Baydyuk M,Wu XS,He L, et al. Brain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal[J]. J Neurosci, 2015, 35(11): 4676-4682.
[29]
Tashiro S,Shinozaki M,Mukaino M, et al. BDNF Induced by Treadmill Training Contributes to the Suppression of Spasticity and Allodynia After Spinal Cord Injury via Upregulation of KCC2[J]. Neurorehabil Neural Repair, 2015, 29(7): 677-689.
[30]
Liu Y,Kim D,Himes BT, et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function[J]. J Neurosci, 1999, 19(11): 4370-4387.
[31]
de Groot DM,Coenen AJ,Verhofstad A, et al. In vivo induction of glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor[J]. Mol Endocrinol, 2006, 20(11): 2987-2998.
[32]
Xiao J,Hughes RA,Lim JY, et al. A small peptide mimetic of brain-derived neurotrophic factor promotes peripheral myelination[J]. J Neurochem, 2013, 125(3): 386-398.
[33]
Wong AW,Xiao J,Kemper D, et al. Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation[J]. J Neurosci, 2013, 33(11): 4947-4957.
[34]
Ikeda O,Murakami M,Ino H, et al. Effects of brain-derived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression[J]. J Neuropathol Exp Neurol, 2002, 61(2): 142-153.
[35]
McTigue DM,Horner PJ,Stokes BT, et al. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord[J]. J Neurosci, 1998, 18(14): 5354-5365.
[36]
Chan JR,Cosgaya JM,Wu YJ, et al. Neurotrophins are key mediators of the myelination programin the peripheral nervous system[J]. Proc Natl Acad Sci USA, 2001, 98(25): 14661-14668.
[37]
Fujimaki H,Win-Shwe TT,Yamamoto S, et al. Role of CD4(+) T cells in the modulation of neurotrophin production in mice exposed to low-level toluene[J]. Immunopharmacol Immunotoxicol, 2009, 31(1): 146-149.
[38]
Kerschensteiner M,Gallmeier E,Behrens L, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation?[J]. J Exp Med, 1999, 189(5): 865-870.
[39]
Maroder M,Bellavia D,Meco D, et al. Expression of trKB neurotrophin receptor during T cell development. Role of brain derived neurotrophic factor in immature thymocyte survival[J]. J Immunol, 1996, 157(7): 2864-2872.
[40]
Linker RA,Lee H,Flach AC, et al. Thymocyte-derived BDNF influences T-cell maturation at the DN3/DN4 transition stage[J]. Eur J Immunol, 2015, 45(5): 1326-1328.
[41]
De Santi L,Cantalupo L,Tassi M, et al. Higher expression of BDNF receptor gp145trkB is associated with lower apoptosis intensity in T cell lines in multiple sclerosis[J]. J Neurol Sci, 2009, 277(1-2): 65-70.
[42]
Ferrini F,Trang T,Mattioli TA, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl-homeostasis[J]. Nat Neurosci, 2013, 16(2): 183-192.
[43]
Ding X,Cai J,Li S, et al. BDNF contributes to the development of neuropathic pain by induction of spinal long-term potentiation via SHP2 associated GluN2B-containing NMDA receptors activation in rats with spinal nerve ligation[J]. Neurobiol Dis, 2015, 73: 428-451.
[44]
Almeida C,DeMaman A,Kusuda R, et al. Exercise therapy normalizes BDNF upregulation and glial hyperactivity in a mouse model of neuropathic pain[J]. Pain, 2014, Epub ahead of print.
[45]
Ostenfeld T,Krishen A,Lai RY, et al. Analgesic efficacy and safety of the novel p38 MAP kinase inhibitor, losmapimod, in patients with neuropathic pain following peripheral nerve injury: a double-blind, placebo-controlled study[J]. Eur J Pain, 2013, 17(6): 844-857.
[46]
Obata K,Yamanaka H,Dai Y, et al. Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophicfactor expression after peripheral inflammation and nerve injury[J]. J Neurosci, 2003, 23(10): 4117-4126.
[47]
Thibault K,Lin WK,Rancillac A, et al. BDNF-dependent plasticity induced by peripheral inflammation in the primary sensory and the cingulate cortex triggers cold allodynia and reveals a major role for endogenous BDNF as a tuner of the affective aspect of pain[J]. J Neurosci, 2014, 34(44): 14739-14751.
[48]
Merighi A,Bardoni R,Salio C, et al. Presynaptic functional trkB receptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina II (substantia gelatinosa) of postnatal rat spinal cord[J]. Dev Neurobiol, 2008, 68(4): 457-475.
[49]
Jin SX,Zhuang ZY,Woolf CJ, et al. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain[J]. J Neurosci, 2003, 23(10): 4017-4022.
[1] 丁妍, 文华轩, 陈芷萱, 曾晴, 张梦雨, 廖伊梅, 罗丹丹, 秦越, 梁美玲, 邹于, 李胜利. 胎儿小脑皮质发育不良的产前超声诊断[J]. 中华医学超声杂志(电子版), 2023, 20(03): 255-264.
[2] 丁妍, 文华轩, 张梦雨, 陈思齐, 温昕, 彭桂艳, 曾晴, 罗丹丹, 廖伊梅, 秦越, 梁美玲, 李胜利. 胎儿小脑表面叶裂的产前超声研究[J]. 中华医学超声杂志(电子版), 2023, 20(01): 14-22.
[3] 李玉静, 陈七一, 谢汝明, 陈步东. 获得性免疫缺陷综合征相关原发性中枢神经系统淋巴瘤的预后研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 200-208.
[4] 李倩, 邓莉平, 陈果, 张忠威, 莫平征, 胡文佳, 陈良君, 张捷, 张永喜, 杨蓉蓉, 熊勇. 宏基因组二代测序在获得性免疫缺陷综合征合并中枢神经系统感染中的临床应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 24-31.
[5] 卫洪波. 腹腔镜保留Denonvilliers 筋膜全直肠系膜切除术[J]. 中华普外科手术学杂志(电子版), 2022, 16(01): 18-18.
[6] 钱永兵, 杭化莲, 张灏旻, 邓羽霄, 陈小松, 夏强. 慢加急性肝衰竭肝移植术后早期并发播散性曲霉病一例[J]. 中华移植杂志(电子版), 2022, 16(05): 306-308.
[7] 张宇鹏, 邓爱军, 孙艳. 促红细胞生成素治疗间接性外伤性视神经病变的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 45-49.
[8] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[9] 戴伟川, 郭协力, 蔡文华, 郑艳菲, 朱玉燕, 陈英贤. 弥漫性轴索损伤BDNF及其Val66Met基因多态性与认知功能的相关性研究[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 11-17.
[10] 孟永生, 雍容, 吉晓丽, 赵钰龙, 赵鹏飞. 右美托咪定复合七氟醚对脑出血继发性损伤的预防效果及神经保护机制分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 44-50.
[11] 张勇, 周丽, 何斌. BDNF Val66Met基因多态性对急性一氧化碳中毒迟发性脑病患者疗效的影响[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 355-359.
[12] 王增成, 葛敏, 赵惠君, 袁学伟, 王丽琴. 监测窒息新生儿血清BDNF、S100B及aEEG动态变化及对脑损伤预测价值[J]. 中华临床医师杂志(电子版), 2022, 16(01): 48-53.
[13] 牛姗姗, 韩佳悦, 吴文浩, 廖健伟, 罗联美, 张亚琴. 弥散张量成像对于康复期COVID-19患者神经损害的初步研究[J]. 中华介入放射学电子杂志, 2022, 10(04): 422-428.
[14] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
[15] 吴嶛, 孙颖, 倪小宇, 倪贵华. 依达拉奉右莰醇注射用浓溶液治疗急性前循环缺血性脑卒中的短期临床疗效[J]. 中华脑血管病杂志(电子版), 2022, 16(04): 253-257.
阅读次数
全文


摘要