切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (05) : 280 -289. doi: 10.3877/cma.j.issn.2095-9141.2025.05.002

基础研究

人脐带间充质干细胞来源外泌体对脑出血后炎症反应和神经损伤的作用机制
马剑波1, 许浩1, 陈一笑2,()   
  1. 1221000 江苏徐州,徐州市中心医院急诊科
    2221000 江苏徐州,徐州市中心医院神经外科
  • 收稿日期:2025-08-28 出版日期:2025-10-15
  • 通信作者: 陈一笑

Mechanism of human umbilical cord mesenchymal stem cell-derived exosomes on inflammatory response and neural damage after intracerebral hemorrhage

Jianbo Ma1, Hao Xu1, Yixiao Chen2,()   

  1. 1Department of Emergency, Xuzhou Central Hospital, Xuzhou 221000, China
    2Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou 221000, China
  • Received:2025-08-28 Published:2025-10-15
  • Corresponding author: Yixiao Chen
  • Supported by:
    Xuzhou Municipal Clinical Technical Backbone Training Program(2025GG008)
引用本文:

马剑波, 许浩, 陈一笑. 人脐带间充质干细胞来源外泌体对脑出血后炎症反应和神经损伤的作用机制[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(05): 280-289.

Jianbo Ma, Hao Xu, Yixiao Chen. Mechanism of human umbilical cord mesenchymal stem cell-derived exosomes on inflammatory response and neural damage after intracerebral hemorrhage[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(05): 280-289.

目的

探讨人脐带间充质干细胞来源外泌体(hUC-MSCs-EXOs)对脑出血(ICH)后炎症反应和神经损伤的影响及其作用机制。

方法

(1)选取健康雄性C57BL/6J小鼠108只,按照随机数字表法分为假手术组(Sham组)、ICH模型组(Model组)和外泌体治疗组(EXO组),每组36只。构建小鼠ICH模型,EXO组在ICH术后4 h经尾静脉注射含100 μg hUC-MSCs-EXOs的磷酸盐缓冲液(PBS)。术后3、7、14 d采用改良神经功能缺损评分(mNSS)评估3组小鼠的神经功能损伤程度。术后7 d,通过HE染色观察病理形态学变化,并检测脑水肿程度及氧化应激指标[丙二醛(MDA)含量、总超氧化物歧化酶(SOD)活性]。(2)建立BV2细胞ICH体外模型,分为对照组(Control组)、ICH+PBS组(PBS组)和ICH+外泌体治疗组(EXO组),其中EXO组采用10 μg/mL hUC-MSCs-EXOs预处理2 h后,再利用160 μmol/L的氯高铁血红素刺激处理12 h。随后检测各组细胞炎症因子[肿瘤坏死因子-α(TNF-α)、白细胞介素(IL)-1β、IL-6]的mRNA相对表达量、细胞活力、细胞凋亡程度,以及高迁移率族蛋白B1(HMGB1)核因子κB抑制蛋白α(IκBα)、核因子κB(NF-κB)等蛋白的相对表达量。

结果

(1)hUC-MSCs-EXOs对ICH小鼠的作用:hUC-MSCs-EXOs显著减轻了ICH后小鼠脑组织的病理损伤和炎症细胞浸润。相较于Model组,EXO组小鼠术后3、7、14 d的mNSS评分及术后7 d的脑组织含水量、MDA含量均显著降低,SOD活性显著升高,差异均有统计学意义(P<0.05)。(2)hUC-MSCs-EXOs对ICH后BV2细胞的作用:相较于PBS组,EXO组TNF-α、IL-1β、IL-6的mRNA相对表达量、细胞早期凋亡水平、细胞内HMGB1和NF-κB的蛋白水平均显著降低,细胞活力、IκBα的蛋白水平均显著上升,差异均有统计学意义(P<0.05)。

结论

hUC-MSCs-EXOs通过抑制HMGB1-NF-κB信号通路,减轻了ICH后的炎症反应和神经损伤,为ICH的治疗提供了新的潜在策略。

Objective

To investigate the effects and mechanisms of human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSCs EXOs) on inflammatory response and nerve damage after intracerebral hemorrhage (ICH).

Methods

(1) A total of 108 healthy male C57BL/6J mice were randomly divided into three groups: Sham group, Model group, and EXO group, with 36 mice in each group. The ICH model was established by stereotactic injection. The EXO group received a tail vein injection of 100 μg hUC-MSCs-EXOs in PBS solution 4 h after ICH surgery. Neurological function was evaluated using the modified neurological severity score (mNSS) on post-operative days 3, 7, and 14. On day 7 post-surgery, pathological morphological changes were observed via HE staining, and brain edema and oxidative stress indicators [malondialdehyde (MDA) content, total superoxide dismutase (SOD) activity] were detected. (2) An in vitro ICH model using BV2 cells was established and divided into three groups: Control group, PBS group, and EXO group. The EXO group was pre-treated with 10 μg/mL hUC-MSCs-EXOs for 2 h, followed by stimulation with 160 μmol/L hemin for 12 h. Subsequently, the relative mRNA expression level of inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6], cell viability, apoptosis rate, and relative protein expression level of high mobility group protein B1 (HMGB1), nuclear factor kappa B inhibitory protein alpha (IκBα), nuclear factor kappa B (NF-κB) were detected in each group.

Results

(1) The effect of hUC-MSCs-EXOs on ICH mice: hUC-MSCs-EXOs significantly alleviated the pathological damage and inflammatory cell infiltration in the brain tissue of mice after ICH. Compared with the Model group, the mNSS scores of mice in the EXO group at 3, 7, and 14 d after surgery, as well as the brain tissue water content and MDA content at 7 d after surgery, were significantly reduced, while SOD activity was significantly increased, and the differences were statistically significant (P<0.05). (2) The effect of hUC-MSCs-EXOs on BV2 cells after ICH: Compared with the PBS group, the mRNA relative expression levels of TNF-α, IL-1β, and IL-6, early cell apoptosis levels, and protein levels of HMGB1 and NF-κB in the EXO group were significantly reduced. Cell viability and protein levels of IκBα were significantly increased, and the differences were statistically significant (P<0.05).

Conclusions

hUC-MSCs-EXOs alleviate inflammatory responses and neuronal damage after ICH by inhibiting the HMGB1-NF-κB signaling pathway, providing a new potential strategy for the treatment of ICH.

表1 qPCR引物序列
Tab.1 qPCR primer sequence
图1 hUC-MSCs-EXOs的鉴定和BV2细胞对其摄取的验证A:Western blot检测外泌体的标志蛋白;B:透射电镜观察外泌体形态;C:纳米颗粒跟踪分析示细胞上清液浓度及外泌体粒径;D:PKH67标记的外泌体(绿色)呈颗粒状分布于胞质;E:DAPI染色示BV2细胞核(蓝色);F:Merge图像示外泌体(绿色)已被BV2细胞吞噬,主要定位于胞质,核内未见绿色信号;hUC-MSCs-EXOs:人脐带间充质干细胞来源外泌体;hUC-MSCs:人脐带间充质干细胞
Fig.1 Identification of hUC-MSC-derived exosomes and verification of their uptake by BV2 cells
图2 hUC-MSCs-EXOs对ICH小鼠作用的体内实验研究(n=6)A:脑组织形态学特征(40×);Sham组神经元排列整齐,胞质丰富、核仁清晰,未见明显变性或坏死;Model组小鼠神经元结构松散,胞体收缩、胞核固缩深染,部分胞核溶解消失,并伴小胶质细胞增生及炎症细胞浸润;EXO组上述细胞排列紊乱程度减轻,神经元变性坏死灶减少,炎症细胞浸润亦相应减少;B:mNSS评分;C:脑组织含水量;D:MDA含量;E:SOD活性;与Sham组相比,aP<0.05;与Model组相比,bP<0.05;hUC-MSCs-EXOs:人脐带间充质干细胞来源外泌体;ICH:脑出血;mNSS:改良神经功能缺损量表;MDA:丙二醛;SOD:超氧化物歧化酶
Fig.2 In vivo experimental study on the effects of hUC-MSCs-EXOs on ICH mice (n=6)
图3 hUC-MSCs-EXOs对ICH后细胞损伤机制的体外实验研究A:TNF-α、IL-1β、IL-6的mRNA相对表达量;B:BV2细胞活力;C:细胞早期凋亡水平;D:HMGB1、IκBα、NF-κB蛋白的相对表达量;与Control组相比,aP<0.05;与PBS组相比,bP<0.05;ICH:脑出血;TNF-α:肿瘤坏死因子-α;IL:白细胞介素;HMGB1:高迁移率族蛋白B1;IκBα:核因子κB抑制蛋白α;NF-κB:核因子κB
Fig.3 In vitro experimental study on the mechanism ofcell damage after ICH induced by hUC-MSCs-EXOs
[1]
Bahouth MN, Deluzio S, Pruski A, et al. Nonpharmacological treatments for hospitalized patients with stroke: a nuanced approach to prescribing early activity[J]. Neurotherapeutics, 2023, 20(3): 712-720. DOI: 10.1007/s13311-023-01392-2.
[2]
Bautista W, Adelson PD, Bicher N, et al. Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage[J]. Ther Adv Neurol Disord, 2021, 14: 17562864211049208. DOI: 10.1177/17562864211049208.
[3]
Zhang C, Zhang S, Yin Y, et al. Clot removal with or without decompressive craniectomy under ICP monitoring for supratentorial intracerebral hemorrhage (CARICH): a randomized controlled trial[J]. Int J Surg, 2024, 110(8): 4804-4809. DOI: 10.1097/js9.0000000000001466.
[4]
Chen D, Chen Z, Yuan J, et al. Research landscape and trends of human umbilical cord mesenchymal stem cell-derived exosomes[J]. Stem Cell Res Ther, 2025, 16(1): 259. DOI: 10.1186/s13287-025-04379-2.
[5]
Han X, Liao R, Li X, et al. Mesenchymal stem cells in treating human diseases: molecular mechanisms and clinical studies[J]. Signal Transduct Target Ther, 2025, 10(1): 262. DOI: 10.1038/s41392-025-02313-9.
[6]
Wang W, Qiao S, Kong X, et al. The role of exosomes in immunopathology and potential therapeutic implications[J]. Cell Mol Immunol, 2025, 22(9): 975-995. DOI: 10.1038/s41423-025-01323-5.
[7]
Li N, Liu X, Wang Q, et al. hUC-MSCs and derived exosomes attenuate DEX-induced muscle atrophy through modulation of estrogen signaling pathway[J]. Stem Cell Res Ther, 2025, 16(1): 419. DOI: 10.1186/s13287-025-04328-z.
[8]
Wang Y, Kong Y, Du J, et al. Injection of human umbilical cord mesenchymal stem cells exosomes for the treatment of knee osteoarthritis: from preclinical to clinical research[J]. J Transl Med, 2025, 23(1): 641. DOI: 10.1186/s12967-025-06623-y.
[9]
Cao L, Pi W, Zhang Y, et al. Targeting the NLRP3-ROS axis: disrupting the oxidative-inflammatory vicious cycle in intracerebral hemorrhage[J]. J Inflamm Res, 2025, 18: 9849-9870. DOI: 10.2147/jir.S529884.
[10]
Ning W, Lyu S, Wang Q, et al. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage[J]. Neural Regen Res, 2025, 20(7): 1829-1848. DOI: 10.4103/nrr.Nrr-d-24-00241.
[11]
Wang XY, Wu F, Zhan RY, et al. Inflammatory role of microglia in brain injury caused by subarachnoid hemorrhage[J]. Front Cell Neurosci, 2022, 16: 956185. DOI: 10.3389/fncel.2022.956185.
[12]
张晟豪,周杰,姚鹏飞,等.雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J].中华神经创伤外科电子杂志, 2024, 10(3): 132-140. DOI: 10.3877/cma.j.issn.2095-9141.2024.03.002.
[13]
Karuppagounder SS, Alim I, Khim SJ, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models[J]. Sci Transl Med, 2016, 8(328): 328ra329. DOI: 10.1126/scitranslmed.aac6008.
[14]
Song D, Ji YB, Huang XW, et al. Lithium attenuates blood-brain barrier damage and brain edema following intracerebral hemorrhage via an endothelial Wnt/β-catenin signaling-dependent mechanism in mice[J]. CNS Neurosci Ther, 2022, 28(6): 862-872. DOI: 10.1111/cns.13832.
[15]
Zhang Y, Khan S, Liu Y, et al. Oxidative stress following intracerebral hemorrhage: from molecular mechanisms to therapeutic targets[J]. Front Immunol, 2022, 13: 847246. DOI: 10.3389/fimmu.2022.847246.
[16]
Li X, Chen G. CNS-peripheral immune interactions in hemorrhagic stroke[J]. J Cereb Blood Flow Metab, 2023, 43(2): 185-197. DOI: 10.1177/0271678x221145089.
[17]
Wan Y, Holste KG, Hua Y, et al. Brain edema formation and therapy after intracerebral hemorrhage[J]. Neurobiol Dis, 2023, 176: 105948. DOI: 10.1016/j.nbd.2022.105948.
[18]
Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells[J]. Nat Rev Mol Cell Biol, 2011, 12(2): 126-131. DOI: 10.1038/nrm3049.
[19]
Cozene B, Sadanandan N, Farooq J, et al. Mesenchymal stem cell-induced anti-neuroinflammation against traumatic brain injury[J]. Cell Transplant, 2021, 30: 9636897211035715. DOI: 10.1177/09636897211035715.
[20]
Chin SP, Abd Rahim ENA, Nor Arfuzir NN. Neuroprotective effects of human umbilical cord mesenchymal stem cells (Neuroncell-EX) in a rat model of ischemic stroke are mediated by immunomodulation, blood-brain barrier integrity, angiogenesis, and neurogenesis[J]. In Vitro Cell Dev Biol Anim, 2025, 61(4): 389-402. DOI: 10.1007/s11626-025-01037-y.
[21]
Li X, Tan J, Xiao Z, et al. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury[J]. Sci Rep, 2017, 7: 43559. DOI: 10.1038/srep43559.
[22]
Zhang A, Zhang Z, Liu R, et al. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit inflammation and fibrotic scar formation after intracerebral hemorrhage[J]. Mol Cell Biochem, 2025, 480(8): 4829-4847. DOI: 10.1007/s11010-025-05259-2.
[23]
Liu X, Wei Q, Lu L, et al. Immunomodulatory potential of mesenchymal stem cell-derived extracellular vesicles: targeting immune cells[J]. Front Immunol, 2023, 14: 1094685. DOI: 10.3389/fimmu.2023.1094685.
[24]
Xie Q, Liu R, Jiang J, et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment?[J]. Stem Cell Res Ther, 2020, 11(1): 519. DOI: 10.1186/s13287-020-02011-z.
[25]
Chen S, Zhang W, Wang JM, et al. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells[J]. Int J Ophthalmol, 2016, 9(1): 41-47. DOI: 10.18240/ijo.2016.01.07.
[26]
Koh HB, Kim HJ, Kang SW, et al. Exosome-based drug delivery: translation from bench to clinic[J]. Pharmaceutics, 2023, 15(8): 2042. DOI: 10.3390/pharmaceutics15082042.
[27]
Chen YF, Luh F, Ho YS, et al. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials[J]. J Biomed Sci, 2024, 31(1): 67. DOI: 10.1186/s12929-024-01055-0.
[28]
Yin S, Ji C, Wu P, et al. Human umbilical cord mesenchymal stem cells and exosomes: bioactive ways of tissue injury repair[J]. Am J Transl Res, 2019, 11(3): 1230-1240.
[29]
Cha ZH, Li Y, Pu JN, et al. Exosome-mediated repair of spinal cord injury: cellular sources, mechanisms of action, and combined therapeutic strategies[J]. Front Neurol, 2025, 16: 1645457. DOI: 10.3389/fneur.2025.1645457.
[30]
Li S, Li Y, Zhu K, et al. Exosomes from mesenchymal stem cells: potential applications in wound healing[J]. Life Sci, 2024, 357: 123066. DOI: 10.1016/j.lfs.2024.123066.
[31]
Xiao S, Lv Y, Hou X, et al. hUC-MSC extracellular vesicles protect against hypoxic-ischemic brain injury by promoting NLRP3 ubiquitination[J]. Biomol Biomed, 2025, 25(7): 1553-1570. DOI: 10.17305/bb.2024.10706.
[32]
Iranpanah A, Kooshki L, Moradi SZ, et al. The exosome-mediated PI3K/Akt/mTOR signaling pathway in neurological diseases[J]. Pharmaceutics, 2023, 15(3): 1006. DOI: 10.3390/pharmaceutics15031006.
[33]
Liu MW, Li H, Xiong GF, et al. Mesenchymal stem cell exosomes therapy for the treatment of traumatic brain injury: mechanism, progress, challenges and prospects[J]. J Transl Med, 2025, 23(1): 427. DOI: 10.1186/s12967-025-06445-y.
[34]
Gu J, Jin ZS, Wang CM, et al. Bone marrow mesenchymal stem cell-derived exosomes improves spinal cord function after injury in rats by activating autophagy[J]. Drug Des Devel Ther, 2020, 14: 1621-1631. DOI: 10.2147/dddt.S237502.
[35]
Tang L, Xu Y, Wang L, et al. Adipose-derived stem cell exosomes ameliorate traumatic brain injury through the NLRP3 signaling pathway[J]. Neuroreport, 2023, 34(13): 677-684. DOI: 10.1097/WNR.0000000000001941.
[1] 孙雪明, 郭慧, 刘瀚旻. 远端肾小管酸中毒伴周围神经损伤及疑似髓质海绵肾患儿1例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(03): 344-349.
[2] 严征远, 张恒, 曹能琦, 方兴超, 陈大敏. 单孔+1腹腔镜结直肠癌根治切除术的有效性及安全性临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 615-618.
[3] 洪菁, 高义, 廖桂兰, 陈晓蔚, 菅志远, 周娟娟, 黄志琼, 韦宇, 邓艳婷. 腹腔镜保留回盲部的右半结肠癌根治术在结肠肝曲和横结肠肿瘤中的应用研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 547-550.
[4] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[5] 李一萱, 李美和, 郑瑾. 肾移植缺血再灌注损伤机制及其对移植肾的影响[J/OL]. 中华移植杂志(电子版), 2025, 19(01): 43-49.
[6] 范玉刚, 瞿冀琛, 范江. 膈肌折叠治疗纵隔肿瘤切除造成的膈神经损伤[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(04): 211-214.
[7] 陈靓, 曾义, 高安亮, 冯杰, 李春玲, 陈隆益, 徐如祥, 何永生. NICU自发性脑出血患者急诊开颅术后医院获得性肺炎的危险因素分析[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(04): 250-255.
[8] 李晓东. 神经内镜下经额部锁孔纤维束外侧入路治疗基底节区脑出血[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 135-136.
[9] 周颖, 张琳琳, 陈光强, 石广志, 周建新. 阵发性交感神经过度兴奋四例临床特征分析[J/OL]. 中华重症医学电子杂志, 2025, 11(03): 302-310.
[10] 李新宇, 梁建锋. 神经内镜治疗基底节区脑出血技术探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 317-320.
[11] 周懿, 黄容华, 刘政疆. 5-羟色胺与铁死亡介导的脓毒症心肌病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 612-617.
[12] 王旭, 陈炳伟. 冠状动脉介入治疗后脑出血致尖顶军盔征心电图一例[J/OL]. 中华心脏与心律电子杂志, 2025, 13(03): 186-188.
[13] 黄秋慧, 梁志坚. 人类免疫缺陷病毒感染患者并发脑出血的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 255-259.
[14] 钱锦宏, 吴建东, 唐晓宇, 邓朋, 丁志良, 马冕. 3D 打印技术辅助神经内镜治疗幕上高血压脑出血破入脑室的临床效果[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 126-132.
[15] 夏禹, 刘寒, 朱瑞. 脑小血管病及其认知障碍研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 155-160.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?