切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (05) : 273 -279. doi: 10.3877/cma.j.issn.2095-9141.2025.05.001

述评

植入式脑机接口技术临床应用及其科技伦理
崔砚1, 徐超2, 刘伟1, 徐江1, 李芳家1, 王洋洋1, 邱文乔1, 郭莉丽1, 袁瑛1, 窦维蓓2, 徐如祥1,()   
  1. 1610072 成都,电子科技大学医学院·四川省人民医院神经外科(植入式脑机接口四川省工程研究中心)
    2100084 北京,清华大学电子工程系
  • 收稿日期:2025-09-21 出版日期:2025-10-15
  • 通信作者: 徐如祥

Clinical applications and technological ethics of implantable brain-computer interface technology

Yan Cui1, Chao Xu2, Wei Liu1, Jiang Xu1, Fangjia Li1, Yangyang Wang1, Wenqiao Qiu1, Lili Guo1, Ying Yuan1, Weibei Dou2, Ruxiang Xu1,()   

  1. 1Department of Neurosurgery, School of Medicine, University of Electronic Science and Technology of China (Sichuan Provincial Engineering Research Center for Implantable Brain-Computer Interfaces), Chengdu 610072, China
    2Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • Received:2025-09-21 Published:2025-10-15
  • Corresponding author: Ruxiang Xu
  • Supported by:
    National Natural Science Foundation of China(82571686, 82502509); National Key Research and Development Program of China(2023YFF1204200); Fundamental Research Funds for the Central Universities(ZYGX2021YGLH219)
引用本文:

崔砚, 徐超, 刘伟, 徐江, 李芳家, 王洋洋, 邱文乔, 郭莉丽, 袁瑛, 窦维蓓, 徐如祥. 植入式脑机接口技术临床应用及其科技伦理[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(05): 273-279.

Yan Cui, Chao Xu, Wei Liu, Jiang Xu, Fangjia Li, Yangyang Wang, Wenqiao Qiu, Lili Guo, Ying Yuan, Weibei Dou, Ruxiang Xu. Clinical applications and technological ethics of implantable brain-computer interface technology[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(05): 273-279.

植入式脑机接口(iBCIs)是一种通过神经外科手术将神经信号采集器植入大脑皮层或深部神经核团,在大脑与外部设备间建立直接通信通路的前沿技术。作为一项革命性的医疗技术,iBCIs为难治性运动障碍疾病与精神性疾病的治疗带来了希望。目前,以脑深部电刺激和闭环式响应神经刺激为代表的iBCIs治疗策略已经在帕金森病、意识障碍、癫痫、扭转痉挛等脑疾病的临床治疗中得到较广泛应用,并取得较好的效果。然而,随着iBCIs临床应用的快速发展,其相关的科技伦理规范等深层次问题也逐渐受到重视,尤其是患者的筛选、医疗目标的确定、医疗时间窗及治疗靶点等。为此,本文围绕iBCIs相关技术在已获国家批准的临床疾病治疗中的应用现状,以及在临床应用中需要考虑的科技伦理问题等展开述评,以期对iBCIs技术临床应用的快速发展和研究提供帮助。

The implantable brain-computer interfaces (iBCIs) are cutting-edge technologies that integrate neural signal transducers like micro-electrodes into the cerebral cortex or deep brain tissue through neurosurgical procedures, establishing direct communication pathways between the brain and external devices. As a revolutionary medical advancement, iBCIs technology has been offering hope for refractory motor disorders and neurological conditions. Currently, iBCIs therapeutic strategies, such as deep brain stimulation and responsive neurostimulation, have been widely adopted in clinical practice for major brain diseases including Parkinson disease, consciousness disorders, drug-resistant epilepsy and torsion spasm, achieving significant therapeutic outcomes. However, the rapid clinical adoption of iBCIs technology has prompted urgent consideration of critical ethical issues, including patient eligibility screening, treatment goal determination, optimal intervention windows, and therapeutic targets. This review examines the current status of iBCIs applications in nationally approved clinical treatments and addresses essential ethical considerations during implementation, aiming to provide guidance for both the accelerated development and research of iBCIs technologies.

[1]
Kawala-Sterniuk A, Browarska N, Al-Bakri A, et al. Summary of over fifty years with brain-computer interfaces-a review[J]. Brain Sci, 2021, 11(1): 43. DOI: 10.3390/brainsci11010043.
[2]
Gao X, Wang Y, Chen X, et al. Interface, interaction, and intelligence in generalized brain-computer interfaces[J]. Trends Cogn Sci, 2021, 25(8): 671-684. DOI: 10.1016/j.tics.2021.04.003.
[3]
Chen Y, Zhang G, Guan L, et al. Progress in the development of a fully implantable brain-computer interface: the potential of sensing-enabled neurostimulators[J]. Natl Sci Rev, 2022, 9(10): nwac099. DOI: 10.1093/nsr/nwac099.
[4]
Rapeaux AB, Constandinou TG. Implantable brain machine interfaces: first-in-human studies, technology challenges and trends[J]. Curr Opin Biotechnol, 2021, 72: 102-111. DOI: 10.1016/j.copbio.2021.10.001.
[5]
Patrick-Krueger KM, Burkhart I, Contreras-Vidal JL. The state of clinical trials of implantable brain-computer interfaces[J]. Nat Rev Bioeng, 2025, 3(1): 50-67. DOI: 10.1038/s44222-024-00239-5.
[6]
Okun MS. Deep-brain stimulation for Parkinson's disease[J]. N Engl J Med, 2012, 367(16): 1529-1538. DOI: 10.1056/NEJMct1208070.
[7]
Mathiopoulou V, Lofredi R, Feldmann LK, et al. Modulation of subthalamic beta oscillations by movement, dopamine, and deep brain stimulation in Parkinson's disease[J]. NPJ Parkinsons Dis, 2024, 10(1): 77. DOI: 10.1038/s41531-024-00693-3.
[8]
Jarosiewicz B, Morrell M. The RNS system: Brain-responsive neurostimulation for the treatment of epilepsy[J]. Expert Rev Med Devices, 2021, 18(2): 129-138. DOI: 10.1080/17434440.2019.1683445.
[9]
Hariz M, Blomstedt P. Deep brain stimulation for Parkinson's disease[J]. J Intern Med, 2022, 292(5): 764-778. DOI: 10.1111/joim.13541.
[10]
Skrehot HC, Englot DJ, Haneef Z. Neuro-stimulation in focal epilepsy: a systematic review and meta-analysis[J]. Epilepsy Behav, 2023, 142: 109182. DOI: 10.1016/j.yebeh.2023.109182.
[11]
Fan H, Zheng Z, Yin Z, et al. Deep brain stimulation treating dystonia: a systematic review of targets, body distributions and etiology classifications[J]. Front Hum Neurosci, 2021, 15: 757579. DOI: 10.3389/fnhum.2021.757579.
[12]
Cernera S, Alcantara JD, Opri E, et al. Wearable sensor-driven responsive deep brain stimulation for essential tremor[J]. Brain Stimul, 2021, 14(6): 1434-1443. DOI: 10.1016/j.brs.2021.09.002.
[13]
Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, et al. The epidemiology of Parkinson's disease[J]. Lancet, 2024, 403(10423): 283-292. DOI: 10.1016/s0140-6736(23)01419-8.
[14]
Morris HR, Spillantini MG, Sue CM, et al. The pathogenesis of Parkinson's disease[J]. Lancet, 2024, 403(10423): 293-304. DOI: 10.1016/s0140-6736(23)01478-2.
[15]
Malek N. Deep brain stimulation in Parkinson's disease[J]. Neurol India, 2019, 67(4): 968-978. DOI: 10.4103/0028-3886.266268.
[16]
Bucur M, Papagno C. Deep brain stimulation in Parkinson disease: a meta-analysis of the long-term neuropsychological outcomes[J]. Neuropsychol Rev, 2023, 33(2): 307-346. DOI: 10.1007/s11065-022-09540-9.
[17]
Petersen JJ, Kamp CB, Faltermeier P, et al. Deep brain stimulation for Parkinson's disease: systematic review with meta-analysis and trial sequential analysis[J]. BMJ Med, 2024, 3(1): e000705. DOI: 10.1136/bmjmed-2023-000705.
[18]
Piña-Fuentes D, van Dijk JMC, van Zijl JC, et al. Acute effects of adaptive deep brain stimulation in Parkinson's disease[J]. Brain Stimul, 2020, 13(6): 1507-1516. DOI: 10.1016/j.brs.2020.07.016.
[19]
Bronte-Stewart HM, Beudel M, Ostrem JL, et al. Long-term personalized adaptive deep brain stimulation in Parkinson disease: a nonrandomized clinical trial[J]. JAMA Neurol, 2025, 82(11): 1171-1180. DOI: 10.1001/jamaneurol.2025.2781.
[20]
Stanslaski S, Summers RLS, Tonder L, et al. Sensing data and methodology from the ADAPTIVE DBS Algorithm for Personalized Therapy in Parkinson's Disease (ADAPT-PD) clinical trial[J]. NPJ Parkinsons Dis, 2024, 10(1): 174. DOI: 10.1038/s41531-024-00772-5.
[21]
Klein P, Kaminski RM, Koepp M, et al. New epilepsy therapies in development[J]. Nat Rev Drug Discov, 2024, 23(9): 682-708. DOI: 10.1038/s41573-024-00981-w.
[22]
Salama H, Salama A, Oscher L, et al. The role of neuromodulation in the management of drug-resistant epilepsy[J]. Neurol Sci, 2024, 45(9): 4243-4268. DOI: 10.1007/s10072-024-07513-9.
[23]
Gouveia FV, Warsi NM, Suresh H, et al. Neurostimulation treatments for epilepsy: deep brain stimulation, responsive neurostimulation and vagus nerve stimulation[J]. Neurotherapeutics, 2024, 21(3): e00308. DOI: 10.1016/j.neurot.2023.e00308.
[24]
Nair DR, Laxer KD, Weber PB, et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy[J]. Neurology, 2020, 95(9): e1244-e1256. DOI: 10.1212/wnl.0000000000010154.
[25]
Malaga M, Modiano Y, Haneef Z. Neuropsychological and neurobehavioral outcomes of responsive neurostimulation in epilepsy: a systematic review and meta-analysis[J]. Epilepsia, 2025, 66(10): 3585-3601. DOI: 10.1111/epi.18505.
[26]
Rao VR. Personalizing responsive neurostimulation for epilepsy[J]. J Clin Neurophysiol, 2025, 42(6): 505-512. DOI: 10.1097/wnp.0000000000001179.
[27]
Balint B, Mencacci NE, Valente EM, et al. Dystonia[J]. Nat Rev Dis Primers, 2018, 4(1): 25. DOI: 10.1038/s41572-018-0023-6.
[28]
Koptielow J, Szyłak E, Szewczyk-Roszczenko O, et al. Genetic update and treatment for dystonia[J]. Int J Mol Sci, 2024, 25(7): 3571. DOI: 10.3390/ijms25073571.
[29]
Paoli D, Mills R, Brechany U, et al. DBS in tremor with dystonia: VIM, GPi or both? A review of the literature and considerations from a single-center experience[J]. J Neurol, 2023, 270(4): 2217-2229. DOI: 10.1007/s00415-023-11569-6.
[30]
Hock AN, Jensen SR, Svaerke KW, et al. A randomised double-blind controlled study of deep brain stimulation for dystonia in STN or GPi-a long term follow-up after up to 15 years[J]. Parkinsonism Relat Disord, 2022, 96: 74-79. DOI: 10.1016/j.parkreldis.2022.02.001.
[31]
Chen W, Fan H, Lu G. The efficacy and predictors of using GPi-DBS to treat early-onset dystonia: an individual patient analysis[J]. Neural Plast, 2021, 2021: 9924639. DOI: 10.1155/2021/9924639.
[32]
Piña-Fuentes D, Beudel M, Little S, et al. Toward adaptive deep brain stimulation for dystonia[J]. Neurosurg Focus, 2018, 45(2): E3. DOI: 10.3171/2018.5.Focus18155.
[33]
Welton T, Cardoso F, Carr JA, et al. Essential tremor[J]. Nat Rev Dis Primers, 2021, 7(1): 83. DOI: 10.1038/s41572-021-00314-w.
[34]
Haubenberger D, Hallett M. Essential tremor[J]. N Engl J Med, 2018, 378(19): 1802-1810. DOI: 10.1056/NEJMcp1707928.
[35]
Aderinto N, Abraham I C, Olatunji G, et al. The efficacy of deep brain stimulation in the treatment of essential tremor: a systematic review[J]. Curr Treat Options Neurol, 2025, 27(1): 1-17. DOI: 10.1007/s11940-025-00831-z.
[36]
Wong JK, Hess CW, Almeida L, et al. Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes[J]. Expert Rev Neurother, 2020, 20(4): 319-331. DOI: 10.1080/14737175.2020.1737017.
[37]
Tsuboi T, Jabarkheel Z, Zeilman PR, et al. Longitudinal follow-up with vim thalamic deep brain stimulation for dystonic or essential tremor[J]. Neurology, 2020, 94(10): e1073-e1084. DOI: 10.1212/wnl.0000000000008875.
[38]
Ferleger BI, Houston B, Thompson MC, et al. Fully implanted adaptive deep brain stimulation in freely moving essential tremor patients[J]. J Neural Eng, 2020, 17(5): 056026. DOI: 10.1088/1741-2552/abb416.
[39]
Acevedo N, Rossell S, Castle D, et al. Clinical outcomes of deep brain stimulation for obsessive-compulsive disorder: insight as a predictor of symptom changes[J]. Psychiatry Clin Neurosci, 2024, 78(2): 131-141. DOI: 10.1111/pcn.13619.
[40]
Vansteensel MJ, Pels EGM, Bleichner MG, et al. Fully implanted brain-computer interface in a locked-in patient with ALS[J]. N Engl J Med, 2016, 375(21): 2060-2066. DOI: 10.1056/NEJMoa1608085.
[41]
中华医学会神经外科学分会功能神经外科学组,中华医学会神经病学分会帕金森病及运动障碍学组,中国医师协会神经内科医师分会帕金森病及运动障碍学组,等.中国帕金森病脑深部电刺激疗法专家共识(第二版)[J].中华神经外科杂志, 2020, 36(4): 325-337. DOI: 10.3760/cma.j.cn112050-20200217-00062.
[42]
中国医师协会神经外科医师分会功能神经外科专家委员会,中华医学会神经外科学分会功能神经外科学组,中国医师协会神经调控专业委员会,等.肌张力障碍脑深部电刺激疗法中国专家共识[J].中华神经外科杂志, 2018, 34(6): 541-545. DOI: 10.3760/cma.j.issn.1001-2346.2018.06.001.
[43]
中华医学会神经病学分会帕金森病及运动障碍学组,中国医师协会神经内科医师分会帕金森病及运动障碍学组,中华医学会神经外科学分会神经生理学组,等.原发性震颤脑深部电刺激术治疗中国专家共识[J].中华神经科杂志, 2021, 54(12): 1225-1233. DOI: 10.3760/cma.j.cn113694-20210518-00345.
[44]
Aydin S, Darko K, Detchou D, et al. Ethics of deep brain stimulation for neuropsychiatric disorders[J]. Neurosurg Rev, 2024, 47(1): 479. DOI: 10.1007/s10143-024-02746-w.
[45]
Abdulrahman Satam I, Szabolcsi R. Ethical and safety challenges of implantable brain-computer interface[J]. INDECS, 2025, 23(2): 82-94. DOI: 10.7906/indecs.23.2.1.
[46]
张喆,陈衍肖,赵旭,等.植入式脑机接口医学应用伦理规范考量[J].生物医学工程学杂志, 2024, 41(1): 177-183. DOI: 10.7507/1001-5515.202309083.
[1] 丁雪薇, 买买提吐逊·吐尔地. 富血小板血浆治疗颞下颌关节骨关节病的机制与临床应用[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(06): 424-428.
[2] 王淑君, 张楚晗, 唐一阳, 赵雨桐, 李佳伦, 付佳乐. 自粘接树脂水门汀的临床应用及展望[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 276-286.
[3] 中华医学会器官移植学分会肝移植学组, 中国医师协会器官移植医师分会. 中国扩大标准供肝移植临床应用指南(2025版)[J/OL]. 中华移植杂志(电子版), 2025, 19(02): 65-75.
[4] 李逸凡, 洪源, 熊茂明. 基于3D Slicer软件的术前规划在腹壁纤维瘤手术中的临床应用价值:一项单中心前瞻性分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 286-291.
[5] 鲁宇青, 李大伟, 邹剑峰, 胡子龙, 李哲, 李琦, 张丽媛, 霍萌, 沈玥, 帅维正. 新型俯卧位翻身辅助装置在急性呼吸窘迫综合征患者中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 757-761.
[6] 中华医学会呼吸病学分会肺功能学组. 成人肺功能检查技术进展及临床应用推荐指南(2025版)[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 197-212.
[7] 林敏杰, 吕艳玲, 姚羽, 王艳泓, 邹如意, 唐成. 支气管镜下钬激光技术在中心气道狭窄中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 315-320.
[8] 陈慧, 田森, 张伟, 董宇超, 白冲, 王琴. 内科胸腔镜检查专用床单在不明原因胸腔积液患者中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 300-303.
[9] 杨柯佳, 孙琦, 瞿伟丰, 翁鸢, 崔启辰, 李金友. Flex-3D 胸腔镜肺叶切除术在非小细胞肺癌中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 62-67.
[10] 马逸夫, 孙芳玲, 刘婷婷, 田欣, 王文. 神经干细胞永生化的机制及其应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 251-256.
[11] 邵旭, 田宏, 于炎冰. STN-DBS治疗合并呼吸困难的Meige综合征[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(02): 125-128.
[12] 孙金兴, 林豪鹏, 贾俊恒, 李珍柯, 张超, 吴倩倩, 李新钢, 李卫国. 脑深部电刺激术在帕金森病中的临床应用与研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(06): 321-324.
[13] 王翔, 冯辉斌. 肺部超声在急性呼吸窘迫综合征表型中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(12): 1155-1160.
[14] 汪和, 胡梦杰, 王天爱, 梅紫暄, 龚铖, 潘定宇, 李震. 新型减重药物在肥胖治疗中的应用进展[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(01): 40-45.
[15] 黄亮, 徐彬翔, 王凯, 李龙, 何琳, 高强, 赵军, 刘天. 时间干涉刺激的发展:从技术原理到临床应用[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(05): 353-363.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?