| [1] |
|
| [2] |
Tan CC, Wang HF, Ji JL, et al. Endovascular treatment versus intravenous thrombolysis for acute ischemic stroke: a quantitative review and meta-analysis of 21 randomized trials[J]. Mol Neurobiol, 2017, 54(2): 1369-1378. DOI: 10.1007/s12035-016-9738-0.
|
| [3] |
Koerver L, Papadopoulos C, Liu B, et al. The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage[J]. EMBO Rep, 2019, 20(10): e48014. DOI: 10.15252/embr.201948014.
|
| [4] |
Prinz M, Mildner A. Microglia in the CNS: immigrants from another world[J]. Glia, 2011, 59(2): 177-187. DOI: 10.1002/glia.21104.
|
| [5] |
Prentice H, Modi JP, Wu JY. Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases[J]. Oxid Med Cell Longev, 2015, 2015: 964518. DOI: 10.1155/2015/964518.
|
| [6] |
Li YY, Qin ZH, Sheng R. The multiple roles of autophagy in neural function and diseases[J]. Neurosci Bull, 2024, 40(3): 363-382. DOI: 10.1007/s12264-023-01120-y.
|
| [7] |
Feigin VL, Nguyen G, Cercy K, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016[J]. N Engl J Med, 2018, 379(25): 2429-2437. DOI: 10.1056/NEJMoa1804492.
|
| [8] |
Qiao C, Liu Z, Qie S. The implications of microglial regulation in neuroplasticity-dependent stroke recovery[J]. Biomolecules, 2023, 13(3): 571. DOI: 10.3390/biom13030571.
|
| [9] |
Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies[J]. Int J Mol Sci, 2021, 23(1): 14. DOI: 10.3390/ijms23010014.
|
| [10] |
Zhao Y, Gan Y, Xu G, et al. MSCs-derived exosomes attenuate acute brain injury and inhibit microglial inflammation by reversing CysLT2R-ERK1/2 mediated microglia M1 polarization[J]. Neurochem Res, 2020, 45(5): 1180-1190. DOI: 10.1007/s11064-020-02998-0.
|
| [11] |
Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J]. Stroke, 2012, 43(11): 3063-3070. DOI: 10.1161/strokeaha.112.659656.
|
| [12] |
Lu Y, Li C, Chen Q, et al. Microthrombus-targeting micelles for neurovascular remodeling and enhanced microcirculatory perfusion in acute ischemic stroke[J]. Adv Mater, 2019, 31(21): e1808361. DOI: 10.1002/adma.201808361.
|
| [13] |
|
| [14] |
Mahemuti Y, Kadeer K, Su R, et al. TSPO exacerbates acute cerebral ischemia/reperfusion injury by inducing autophagy dysfunction[J]. Exp Neurol, 2023, 369: 114542. DOI: 10.1016/j.expneurol.2023.114542.
|
| [15] |
Eskelinen EL. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy[J]. Mol Aspects Med, 2006, 27(5-6): 495-502. DOI: 10.1016/j.mam.2006.08.005.
|
| [16] |
Ye Y, Li L, Kang H, et al. LAMP1 controls CXCL10-CXCR3 axis mediated inflammatory regulation of macrophage polarization during inflammatory stimulation[J]. Int Immunopharmacol, 2024, 132: 111929. DOI: 10.1016/j.intimp.2024.111929.
|
| [17] |
Adhami F, Liao G, Morozov YM, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy[J]. Am J Pathol, 2006, 169(2): 566-583. DOI: 10.2353/ajpath.2006.051066.
|
| [18] |
Wei H, Li Y, Han S, et al. Cpkcγ-modulated autophagy in neurons alleviates ischemic injury in brain of mice with ischemic stroke through Akt-mTOR pathway[J]. Transl Stroke Res, 2016, 7(6): 497-511. DOI: 10.1007/s12975-016-0484-4.
|
| [19] |
Wu Q, Luo CL, Tao LY. Dynamin-related protein 1 (Drp1) mediating mitophagy contributes to the pathophysiology of nervous system diseases and brain injury[J]. Histol Histopathol, 2017, 32(6): 551-559. DOI: 10.14670/hh-11-841.
|
| [20] |
Wolf MS, Bayır H, Kochanek PM, et al. The role of autophagy in acute brain injury: a state of flux?[J]. Neurobiol Dis, 2019, 122: 9-15. DOI: 10.1016/j.nbd.2018.04.018.
|
| [21] |
Sheng R, Zhang LS, Han R, et al. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning[J]. Autophagy, 2010, 6(4): 482-494. DOI: 10.4161/auto.6.4.11737.
|
| [22] |
Yang Z, Zhong L, Zhong S, et al. Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model[J]. Exp Mol Pathol, 2015, 98(2): 219-224. DOI: 10.1016/j.yexmp.2015.02.003.
|
| [23] |
Zhang DM, Zhang T, Wang MM, et al. Tigar alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury[J]. Free Radic Biol Med, 2019, 137: 13-23. DOI: 10.1016/j.freeradbiomed.2019.04.002.
|
| [24] |
Xiong J, Kong Q, Dai L, et al. Autophagy activated by tuberin/mTOR/p70S6K suppression is a protective mechanism against local anaesthetics neurotoxicity[J]. J Cell Mol Med, 2017, 21(3): 579-587. DOI: 10.1111/jcmm.13003.
|
| [25] |
Jang Y. Endurance exercise-induced expression of autophagy-related protein coincides with anabolic expression and neurogenesis in the hippocampus of the mouse brain[J]. Neuroreport, 2020, 31(6): 442-449. DOI: 10.1097/wnr.0000000000001431.
|
| [26] |
|
| [27] |
Cheng XT, Xie YX, Zhou B, et al. Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons[J]. J Cell Biol, 2018, 217(9): 3127-3139. DOI: 10.1083/jcb.201711083.
|
| [28] |
Fekadu J, Rami A. Beclin-1 deficiency alters autophagosome formation, lysosome biogenesis and enhances neuronal vulnerability of HT22 hippocampal cells[J]. Mol Neurobiol, 2016, 53(8): 5500-5509. DOI: 10.1007/s12035-015-9453-2.
|
| [29] |
Zhang X, Wei M, Fan J, et al. Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons[J]. Autophagy, 2021, 17(6): 1519-1542. DOI: 10.1080/15548627.2020.1840796.
|
| [30] |
Marques ARA, Di Spiezio A, Thießen N, et al. Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis[J]. Autophagy, 2020, 16(5): 811-825. DOI: 10.1080/15548627.2019.1637200.
|