切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (02) : 107 -111. doi: 10.3877/cma.j.issn.2095-9141.2024.02.008

综述

脑出血后继发性脑损伤与线粒体相关机制的研究进展
苗楠1, 宗子钰1,()   
  1. 1. 710038 西安,空军军医大学附属唐都医院神经外科
  • 收稿日期:2023-02-05 出版日期:2024-04-15
  • 通信作者: 宗子钰

Research progress on the mechanism of mitochondria related to secondary brain injury after intracerebral hemorrhage

Nan Miao1, Ziyu Zong1,()   

  1. 1. Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
  • Received:2023-02-05 Published:2024-04-15
  • Corresponding author: Ziyu Zong
  • Supported by:
    National Natural Science Foundation of China(81801256)
引用本文:

苗楠, 宗子钰. 脑出血后继发性脑损伤与线粒体相关机制的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 107-111.

Nan Miao, Ziyu Zong. Research progress on the mechanism of mitochondria related to secondary brain injury after intracerebral hemorrhage[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(02): 107-111.

脑出血是一种高致残率、高致死率以及低治愈率的脑血管疾病,脑出血造成的脑损伤会对患者的脑组织造成非常严重的伤害,其中一个主要的病理机制是患者的线粒体结构以及功能稳态平衡遭受破坏,脑出血后继发脑损伤患者的线粒体结构以及功能的变化对患者神经元的保护具有重要意义。近年来随着对线粒体通透性转换孔、线粒体自噬以及线粒体氧化应激等线粒体稳态失衡研究的深入,其与脑出血后继发性脑损伤之间的相关机制也愈加明确。本文对脑出血后继发性脑损伤与线粒体相关机制进行归纳及综述,以期为脑出血后继发性脑损伤临床应用提供新的思路和方法。

Intracerebral hemorrhage is a cerebrovascular disease with high disability rate, high mortality rate and low cure rate. The brain injury caused by intracerebral hemorrhage will cause very serious damage to the patient's brain tissue, one of the main pathological mechanisms is the destruction of the patient's mitochondrial structure and functional homeostasis, the changes of mitochondrial structure and function in patients with secondary brain injury after intracerebral hemorrhage are of great significance for the protection of neurons. In recent years, with the deepening of the research on mitochondrial homeostasis imbalance such as mitochondrial permeability transition pore, mitochondrial autophagy and mitochondrial oxidative stress, the related mechanism between it and secondary brain injury after intracerebral hemorrhage has become more and more clear. This paper summarizes and summarizes the related mechanisms between secondary brain injury and mitochondria after intracerebral hemorrhage, in order to provide new ideas and methods for the clinical application of secondary brain injury after intracerebral hemorrhage.

[20]
Klimova N, Long A, Kristian T. Nicotinamide mononucleotide alters mitochondrial dynamics by SIRT3-dependent mechanism in male mice[J]. J Neurosci Res, 2019, 97(8): 975-990. DOI: 10.1002/jnr.24397.
[21]
Jiang Q, Wang L, Si X, et al. Current progress on the mechanisms of hyperhomocysteinemia-induced vascular injury and use of natural polyphenol compounds[J]. Eur J Pharmacol, 2021, 905: 174168. DOI: 10.1016/j.ejphar.2021.174168.
[22]
Zhang B, Gao Y, Li Q, et al. Effects of brain-derived mitochondria on the function of neuron and vascular endothelial cell after traumatic brain injury[J]. World Neurosurg, 2020, 138: e1-e9. DOI: 10.1016/j.wneu.2019.11.172.
[23]
Wang Y, Liu Y, Li Y, et al. Protective effects of astaxanthin on subarachnoid hemorrhage-induced early brain injury: reduction of cerebral vasospasm and improvement of neuron survival and mitochondrial function[J]. Acta Histochem, 2019, 121(1): 56-63. DOI: 10.1016/j.acthis.2018.10.014.
[24]
Yu X, Jia L, Yu W, et al. Dephosphorylation by calcineurin regulates translocation of dynamin-related protein 1 to mitochondria in hepatic ischemia reperfusion induced hippocampus injury in young mice[J]. Brain Res, 2019, 1711: 68-76. DOI: 10.1016/j.brainres.2019.01.018.
[25]
Zhao J, Qu D, Xi Z, et al. Mitochondria transplantation protects traumatic brain injury via promoting neuronal survival and astrocytic BDNF[J]. Transl Res, 2021, 235: 102-114. DOI: 10.1016/j.trsl.2021.03.017.
[26]
Singh-Mallah G, Nair S, Sandberg M, et al. The role of mitochondrial and endoplasmic reticulum reactive oxygen species production in models of perinatal brain injury[J]. Antioxid Redox Signal, 2019, 31(9): 643-663. DOI: 10.1089/ars.2019.7779.
[27]
Diao X, Zhou Z, Xiang W, et al. Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction[J]. Brain Res, 2020, 1727: 146514. DOI: 10.1016/j.brainres.2019.146514.
[28]
Zhao Y, Yan F, Yin J, et al. Synergistic interaction between zinc and reactive oxygen species amplifies ischemic brain injury in rats[J]. Stroke, 2018, 49(9): 2200-2210. DOI: 10.1161/strokeaha.118.021179.
[29]
Wang B, Han S. Modified exosomes reduce apoptosis and ameliorate neural deficits induced by traumatic brain injury[J]. ASAIO J, 2019, 65(3): 285-292. DOI: 10.1097/mat.0000000000000810.
[30]
杨梅桂,郑凯,宋质银.线粒体-内质网相互作用机制、功能及其与相关疾病的关系研究进展[J].新乡医学院学报, 2020, 37(10): 996-1001. DOI: 10.7683/xxyxyxb.2020.10.021.
[31]
Nebie O, Carvalho K, Barro L, et al. Human platelet lysate biotherapy for traumatic brain injury: preclinical assessment[J]. Brain, 2021, 144(10): 3142-3158. DOI: 10.1093/brain/awab205.
[32]
Chen Y, Meng J, Xu Q, et al. Rapamycin improves the neuroprotection effect of inhibition of NLRP3 inflammasome activation after TBI[J]. Brain Res, 2019, 1710: 163-172. DOI: 10.1016/j.brainres.2019.01.005.
[33]
Yang Y, Zhao X, Wang R. Research progress on the formation mechanism and detection technology of bread flavor[J]. J Food Sci, 2022, 87(9): 3724-3736. DOI: 10.1111/1750-3841.16254.
[1]
Zhu H, Wang Z, Yu J, et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage[J]. Prog Neurobiol, 2019, 178: 101610. DOI: 10.1016/j.pneurobio.2019.03.003.
[2]
Wu X, Cui W, Guo W, et al. Acrolein aggravates secondary brain injury after intracerebral hemorrhage through Drp1-mediated mitochondrial oxidative damage in mice[J]. Neurosci Bull, 2020, 36(10): 1158-1170. DOI: 10.1007/s12264-020-00505-7.
[3]
Xu W, Li T, Gao L, et al. Sodium benzoate attenuates secondary brain injury by inhibiting neuronal apoptosis and reducing mitochondria-mediated oxidative stress in a rat model of intracerebral hemorrhage: Possible involvement of DJ-1/Akt/IKK/NFκB pathway[J]. Front Mol Neurosci, 2019, 12: 105. DOI: 10.3389/fnmol.2019.00105.
[4]
Zheng J, Shi L, Liang F, et al. Sirt3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats[J]. Front Neurosci, 2018, 12: 414. DOI: 10.3389/fnins.2018.00414.
[5]
陈斌,成宜军,陈正鸿,等.脑出血后神经细胞死亡机制的研究进展[J].中国脑血管病杂志, 2018, 15(3): 153-156. DOI: 10.3969/j.issn.1672-5921.2018.03.009.
[6]
吴倩,王丽醌,伍国锋.脑出血后激活PPAR-γ对继发性脑损伤的治疗价值研究进展[J].重庆医科大学学报, 2021, 46(5): 529-532. DOI: 10.13406/j.cnki.cyxb.002538.
[7]
Zhang Y, Rui T, Luo C, et al. Mdivi-1 alleviates brain damage and synaptic dysfunction after intracerebral hemorrhage in mice[J]. Exp Brain Res, 2021, 239(5): 1581-1593. DOI: 10.1007/s00221-021-06089-6.
[8]
Diao X, Zhou Z, Xiang W, et al. Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction[J]. Brain Res, 2020, 1727: 146514. DOI: 10.1016/j.brainres.2019.146514.
[9]
Ma H, Wang X, Zhang W, et al. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis[J]. Oxid Med Cell Longev, 2020, 2020: 9067610. DOI: 10.1155/2020/9067610.
[10]
Anqi X, Ruiqi C, Yanming R, et al. Neuroprotective potential of GDF11 in experimental intracerebral hemorrhage in elderly rats[J]. J Clin Neurosci, 2019, 63: 182-188. DOI: 10.1016/j.jocn.2019.02.016.
[11]
Wang S, Hou J. Research progress on the regulatory mechanism of hepatic inflammation-induced carcinogenesis[J]. Chin J Cancer Bioth, 2020, 27(1): 1-8. DOI: 10.3872/j.issn.1007-385X.2020.01.001.
[12]
Niu J, Hu R. Role of flunarizine hydrochloride in secondary brain injury following intracerebral hemorrhage in rats[J]. Int J Immunopathol Pharmacol, 2017, 30(4): 413-419. DOI: 10.1177/0394632017742224.
[13]
Deng D, Wang W, Li XL, et al. Research progress on mechanisms of Chinese materia medica in treatment of hypertension[J]. Chin Trad Herbal Drugs, 2017, 48(21): 4565-4570. DOI: 10.7501/j.issn.0253-2670.2017.21.032.
[14]
Kang X, Zuo Z, Hong W, et al. Progress of research on exosomes in the protection against ischemic brain injury[J]. Front Neurosci, 2019, 13: 1149. DOI: 10.3389/fnins.2019.01149.
[15]
吴丹,漆仲文,张伟,等.脑缺血/再灌注损伤后线粒体结构与功能稳态失衡机制的研究进展[J].中国医药导报, 2021, 18(31): 42-45, 66.
[16]
张润芳,叶青青,冯硕,等.线粒体自噬保护缺血性脑损伤的作用及相关中药研究现状[J].中国临床药理学杂志, 2021, 37(22): 3176-3179. DOI: 10.13699/j.cnki.1001-6821.2021.22.039.
[17]
郭士佳,俞春江,陈立杰.线粒体功能障碍与脑缺血的研究进展[J].中西医结合心脑血管病杂志, 2019, 17(24): 3964-3966. DOI: 10.12102/j.issn.1672-1349.2019.24.026.
[18]
Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells[J]. J Appl Toxicol, 2021, 41(5): 683-700. DOI: 10.1002/jat.4121.
[19]
Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention[J]. Med Res Rev, 2021, 41(2): 770-784. DOI: 10.1002/med.21712.
[1] 于桐, 孙姗姗, 刘扬. 乳腺导管原位癌的浸润转化机制及临床病理特征[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 304-307.
[2] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[3] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[4] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[5] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[6] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[7] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[8] 王梦琪, 刘恒昌, 陈海鹏, 刘佳. 骶神经刺激治疗排便失禁的机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 417-422.
[9] 王永楠, 汤畅通, 殷杰, 谭溢涛. 微创钻孔引流术与神经内镜血肿清除术治疗临界量基底节脑出血的效果对比分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 286-292.
[10] 张志超, 李陈, 韩惠, 周夏, 洪家康. 经额平行白质纤维束立体定向血肿穿刺引流术与神经内镜下血肿清除术治疗基底节脑出血的临床对比分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 299-303.
[11] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[12] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[13] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[14] 穆巴拉克·伊力哈, 徐霁华, 鲁明. 急性轻型卒中微量脑出血误诊病例的临床特点及影像学表现分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 441-445.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?