切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (02) : 107 -111. doi: 10.3877/cma.j.issn.2095-9141.2024.02.008

综述

脑出血后继发性脑损伤与线粒体相关机制的研究进展
苗楠1, 宗子钰1,()   
  1. 1. 710038 西安,空军军医大学附属唐都医院神经外科
  • 收稿日期:2023-02-05 出版日期:2024-04-15
  • 通信作者: 宗子钰

Research progress on the mechanism of mitochondria related to secondary brain injury after intracerebral hemorrhage

Nan Miao1, Ziyu Zong1,()   

  1. 1. Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
  • Received:2023-02-05 Published:2024-04-15
  • Corresponding author: Ziyu Zong
  • Supported by:
    National Natural Science Foundation of China(81801256)
引用本文:

苗楠, 宗子钰. 脑出血后继发性脑损伤与线粒体相关机制的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 107-111.

Nan Miao, Ziyu Zong. Research progress on the mechanism of mitochondria related to secondary brain injury after intracerebral hemorrhage[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(02): 107-111.

脑出血是一种高致残率、高致死率以及低治愈率的脑血管疾病,脑出血造成的脑损伤会对患者的脑组织造成非常严重的伤害,其中一个主要的病理机制是患者的线粒体结构以及功能稳态平衡遭受破坏,脑出血后继发脑损伤患者的线粒体结构以及功能的变化对患者神经元的保护具有重要意义。近年来随着对线粒体通透性转换孔、线粒体自噬以及线粒体氧化应激等线粒体稳态失衡研究的深入,其与脑出血后继发性脑损伤之间的相关机制也愈加明确。本文对脑出血后继发性脑损伤与线粒体相关机制进行归纳及综述,以期为脑出血后继发性脑损伤临床应用提供新的思路和方法。

Intracerebral hemorrhage is a cerebrovascular disease with high disability rate, high mortality rate and low cure rate. The brain injury caused by intracerebral hemorrhage will cause very serious damage to the patient's brain tissue, one of the main pathological mechanisms is the destruction of the patient's mitochondrial structure and functional homeostasis, the changes of mitochondrial structure and function in patients with secondary brain injury after intracerebral hemorrhage are of great significance for the protection of neurons. In recent years, with the deepening of the research on mitochondrial homeostasis imbalance such as mitochondrial permeability transition pore, mitochondrial autophagy and mitochondrial oxidative stress, the related mechanism between it and secondary brain injury after intracerebral hemorrhage has become more and more clear. This paper summarizes and summarizes the related mechanisms between secondary brain injury and mitochondria after intracerebral hemorrhage, in order to provide new ideas and methods for the clinical application of secondary brain injury after intracerebral hemorrhage.

[20]
Klimova N, Long A, Kristian T. Nicotinamide mononucleotide alters mitochondrial dynamics by SIRT3-dependent mechanism in male mice[J]. J Neurosci Res, 2019, 97(8): 975-990. DOI: 10.1002/jnr.24397.
[21]
Jiang Q, Wang L, Si X, et al. Current progress on the mechanisms of hyperhomocysteinemia-induced vascular injury and use of natural polyphenol compounds[J]. Eur J Pharmacol, 2021, 905: 174168. DOI: 10.1016/j.ejphar.2021.174168.
[22]
Zhang B, Gao Y, Li Q, et al. Effects of brain-derived mitochondria on the function of neuron and vascular endothelial cell after traumatic brain injury[J]. World Neurosurg, 2020, 138: e1-e9. DOI: 10.1016/j.wneu.2019.11.172.
[23]
Wang Y, Liu Y, Li Y, et al. Protective effects of astaxanthin on subarachnoid hemorrhage-induced early brain injury: reduction of cerebral vasospasm and improvement of neuron survival and mitochondrial function[J]. Acta Histochem, 2019, 121(1): 56-63. DOI: 10.1016/j.acthis.2018.10.014.
[24]
Yu X, Jia L, Yu W, et al. Dephosphorylation by calcineurin regulates translocation of dynamin-related protein 1 to mitochondria in hepatic ischemia reperfusion induced hippocampus injury in young mice[J]. Brain Res, 2019, 1711: 68-76. DOI: 10.1016/j.brainres.2019.01.018.
[25]
Zhao J, Qu D, Xi Z, et al. Mitochondria transplantation protects traumatic brain injury via promoting neuronal survival and astrocytic BDNF[J]. Transl Res, 2021, 235: 102-114. DOI: 10.1016/j.trsl.2021.03.017.
[26]
Singh-Mallah G, Nair S, Sandberg M, et al. The role of mitochondrial and endoplasmic reticulum reactive oxygen species production in models of perinatal brain injury[J]. Antioxid Redox Signal, 2019, 31(9): 643-663. DOI: 10.1089/ars.2019.7779.
[27]
Diao X, Zhou Z, Xiang W, et al. Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction[J]. Brain Res, 2020, 1727: 146514. DOI: 10.1016/j.brainres.2019.146514.
[28]
Zhao Y, Yan F, Yin J, et al. Synergistic interaction between zinc and reactive oxygen species amplifies ischemic brain injury in rats[J]. Stroke, 2018, 49(9): 2200-2210. DOI: 10.1161/strokeaha.118.021179.
[29]
Wang B, Han S. Modified exosomes reduce apoptosis and ameliorate neural deficits induced by traumatic brain injury[J]. ASAIO J, 2019, 65(3): 285-292. DOI: 10.1097/mat.0000000000000810.
[30]
杨梅桂,郑凯,宋质银.线粒体-内质网相互作用机制、功能及其与相关疾病的关系研究进展[J].新乡医学院学报, 2020, 37(10): 996-1001. DOI: 10.7683/xxyxyxb.2020.10.021.
[31]
Nebie O, Carvalho K, Barro L, et al. Human platelet lysate biotherapy for traumatic brain injury: preclinical assessment[J]. Brain, 2021, 144(10): 3142-3158. DOI: 10.1093/brain/awab205.
[32]
Chen Y, Meng J, Xu Q, et al. Rapamycin improves the neuroprotection effect of inhibition of NLRP3 inflammasome activation after TBI[J]. Brain Res, 2019, 1710: 163-172. DOI: 10.1016/j.brainres.2019.01.005.
[33]
Yang Y, Zhao X, Wang R. Research progress on the formation mechanism and detection technology of bread flavor[J]. J Food Sci, 2022, 87(9): 3724-3736. DOI: 10.1111/1750-3841.16254.
[1]
Zhu H, Wang Z, Yu J, et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage[J]. Prog Neurobiol, 2019, 178: 101610. DOI: 10.1016/j.pneurobio.2019.03.003.
[2]
Wu X, Cui W, Guo W, et al. Acrolein aggravates secondary brain injury after intracerebral hemorrhage through Drp1-mediated mitochondrial oxidative damage in mice[J]. Neurosci Bull, 2020, 36(10): 1158-1170. DOI: 10.1007/s12264-020-00505-7.
[3]
Xu W, Li T, Gao L, et al. Sodium benzoate attenuates secondary brain injury by inhibiting neuronal apoptosis and reducing mitochondria-mediated oxidative stress in a rat model of intracerebral hemorrhage: Possible involvement of DJ-1/Akt/IKK/NFκB pathway[J]. Front Mol Neurosci, 2019, 12: 105. DOI: 10.3389/fnmol.2019.00105.
[4]
Zheng J, Shi L, Liang F, et al. Sirt3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats[J]. Front Neurosci, 2018, 12: 414. DOI: 10.3389/fnins.2018.00414.
[5]
陈斌,成宜军,陈正鸿,等.脑出血后神经细胞死亡机制的研究进展[J].中国脑血管病杂志, 2018, 15(3): 153-156. DOI: 10.3969/j.issn.1672-5921.2018.03.009.
[6]
吴倩,王丽醌,伍国锋.脑出血后激活PPAR-γ对继发性脑损伤的治疗价值研究进展[J].重庆医科大学学报, 2021, 46(5): 529-532. DOI: 10.13406/j.cnki.cyxb.002538.
[7]
Zhang Y, Rui T, Luo C, et al. Mdivi-1 alleviates brain damage and synaptic dysfunction after intracerebral hemorrhage in mice[J]. Exp Brain Res, 2021, 239(5): 1581-1593. DOI: 10.1007/s00221-021-06089-6.
[8]
Diao X, Zhou Z, Xiang W, et al. Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction[J]. Brain Res, 2020, 1727: 146514. DOI: 10.1016/j.brainres.2019.146514.
[9]
Ma H, Wang X, Zhang W, et al. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis[J]. Oxid Med Cell Longev, 2020, 2020: 9067610. DOI: 10.1155/2020/9067610.
[10]
Anqi X, Ruiqi C, Yanming R, et al. Neuroprotective potential of GDF11 in experimental intracerebral hemorrhage in elderly rats[J]. J Clin Neurosci, 2019, 63: 182-188. DOI: 10.1016/j.jocn.2019.02.016.
[11]
Wang S, Hou J. Research progress on the regulatory mechanism of hepatic inflammation-induced carcinogenesis[J]. Chin J Cancer Bioth, 2020, 27(1): 1-8. DOI: 10.3872/j.issn.1007-385X.2020.01.001.
[12]
Niu J, Hu R. Role of flunarizine hydrochloride in secondary brain injury following intracerebral hemorrhage in rats[J]. Int J Immunopathol Pharmacol, 2017, 30(4): 413-419. DOI: 10.1177/0394632017742224.
[13]
Deng D, Wang W, Li XL, et al. Research progress on mechanisms of Chinese materia medica in treatment of hypertension[J]. Chin Trad Herbal Drugs, 2017, 48(21): 4565-4570. DOI: 10.7501/j.issn.0253-2670.2017.21.032.
[14]
Kang X, Zuo Z, Hong W, et al. Progress of research on exosomes in the protection against ischemic brain injury[J]. Front Neurosci, 2019, 13: 1149. DOI: 10.3389/fnins.2019.01149.
[15]
吴丹,漆仲文,张伟,等.脑缺血/再灌注损伤后线粒体结构与功能稳态失衡机制的研究进展[J].中国医药导报, 2021, 18(31): 42-45, 66.
[16]
张润芳,叶青青,冯硕,等.线粒体自噬保护缺血性脑损伤的作用及相关中药研究现状[J].中国临床药理学杂志, 2021, 37(22): 3176-3179. DOI: 10.13699/j.cnki.1001-6821.2021.22.039.
[17]
郭士佳,俞春江,陈立杰.线粒体功能障碍与脑缺血的研究进展[J].中西医结合心脑血管病杂志, 2019, 17(24): 3964-3966. DOI: 10.12102/j.issn.1672-1349.2019.24.026.
[18]
Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells[J]. J Appl Toxicol, 2021, 41(5): 683-700. DOI: 10.1002/jat.4121.
[19]
Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention[J]. Med Res Rev, 2021, 41(2): 770-784. DOI: 10.1002/med.21712.
[1] 王泽华, 郭子瑊, 陈帅, 狄靖凯, 闫泽辉, 冯腾达, 毛兴佳, 向川. 线粒体质量控制在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2024, 18(02): 365-374.
[2] 朱江, 张进, 孔云飞, 李军, 宋旭. 核梭杆菌和胰腺癌的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 448-451.
[3] 何羽. 腔镜微创手术治疗分化型甲状腺癌的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 456-458.
[4] 赵淑樱, 张聃. 腹腔镜胃癌外科治疗进展与发展趋势[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 459-462.
[5] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[6] 吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.
[7] 王浩年, 孙备, 陈华. 胆管内乳头状肿瘤的诊治策略[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 140-144.
[8] 张轶男, 朱国贞. 急性肾损伤向慢性肾脏病转变研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 106-112.
[9] 董西朝, 王林林, 袁致海, 高文文. 超早期经脑沟裂入路与经脑回皮质入路显微手术治疗基底节区脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 100-105.
[10] 鲁悦, 李伟, 庄宗, 王娟, 赵鹏来, 杭春华. 脑出血继发吉兰-巴雷综合征二例报道并文献复习[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 120-123.
[11] 安亚楠, 王端然, 郭甜甜, 武希润. 幽门螺杆菌阴性胃黏膜相关淋巴组织淋巴瘤的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 268-274.
[12] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[13] 邓仙裕, 罗钰璇, 张溱乐, 余展鹏, 彭亮. 自发性脑出血重症患者30 d死亡风险预测模型的建立及验证[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 121-128.
[14] 王永彬, 贾彦迅, 尹轶广. 神经导航结合3D重建技术引导神经内镜血肿清除术对高血压脑出血患者的影响[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 153-156.
[15] 沈洁, 谢鸿阳, 夏翠俏, 黄勇华. 脑小血管病与认知衰弱的研究现状[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 181-184.
阅读次数
全文


摘要