[1] |
Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
|
[2] |
Zacharia BE, Bruce SS, Goldstein H, et al. Incidence, treatment and survival of patients with craniopharyngioma in the surveillance, epidemiology and end results program[J]. Neuro Oncol, 2012, 14(8): 1070-1078. DOI: 10.1093/neuonc/nos142.
|
[3] |
Momin AA, Recinos MA, Cioffi G, et al. Descriptive epidemiology of craniopharyngiomas in the United States[J]. Pituitary, 2021, 24(4): 517-522. DOI: 10.1007/s11102-021-01127-6.
|
[4] |
Otte A, Müller HL. Childhood-onset craniopharyngioma[J]. J Clin Endocrinol Metab, 2021, 106(10): e3820-e3836. DOI: 10.1210/clinem/dgab397.
|
[5] |
Mallucci C, Pizer B, Blair J, et al. Management of craniopharyngioma: the Liverpool experience following the introduction of the CCLG guidelines. Introducing a new risk assessment grading system[J]. Childs Nerv Syst, 2012, 28(8): 1181-1192. DOI: 10.1007/s00381-012-1787-8.
|
[6] |
Puget S, Garnett M, Wray A, et al. Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement[J]. J Neurosurg, 2007, 106(1 Suppl): 3-12. DOI: 10.3171/ped.2007.106.1.3.
|
[7] |
Park HJ, Dho YS, Kim JH, et al. Recurrence rate and prognostic factors for the adult craniopharyngiomas in long-term follow-up[J]. World Neurosurg, 2020, 133: e211-e217. DOI: 10.1016/j.wneu.2019.08.209.
|
[8] |
Castro-Dufourny I, Carrasco R, Prieto R, et al. The first sixty-five craniopharyngioma operations in France[J]. Rev Neurol (Paris), 2017, 173(4): 180-188. DOI: 10.1016/j.neurol.2016.12.030.
|
[9] |
Wu J, Wu X, Yang YQ, et al. Association of histological subtype with risk of recurrence in craniopharyngioma patients: a systematic review and meta-analysis[J]. Neurosurg Rev, 2022, 45(1): 139-150. DOI: 10.1007/s10143-021-01563-9.
|
[10] |
Dong M, Xu T, Li H, et al. LINC00052 promotes breast cancer cell progression and metastasis by sponging miR-145-5p to modulate TGFBR2 expression[J]. Oncol Lett, 2021, 21(5): 368. DOI: 10.3892/ol.2021.12629.
|
[11] |
Kadkhoda S, Ghafouri-Fard S. Function of miRNA-145-5p in the pathogenesis of human disorders[J]. Pathol Res Pract, 2022, 231: 153780. DOI: 10.1016/j.prp.2022.153780.
|
[12] |
Chen J, Chen T, Zhu Y, et al. circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma[J]. J Exp Clin Cancer Res, 2019, 38(1): 398. DOI: 10.1186/s13046-019-1376-8.
|
[13] |
Rani SB, Rathod SS, Karthik S, et al. MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells[J]. Neuro Oncol, 2013, 15(10): 1302-1316. DOI: 10.1093/neuonc/not090.
|
[14] |
Campanini ML, Colli LM, Paixao BM, et al. CTNNB1 gene mutations, pituitary transcription factors, and MicroRNA expression involvement in the pathogenesis of adamantinomatous craniopharyngiomas[J]. Horm Cancer, 2010, 1(4): 187-196. DOI: 10.1007/s12672-010-0041-7.
|
[15] |
Chen S, Deng X, Sheng H, et al. Noncoding RNAs in pediatric brain tumors: molecular functions and pathological implications[J]. Mol Ther Nucleic Acids, 2021, 26417-431. DOI: 10.1016/j.omtn.2021.07.024.
|
[16] |
Chang CV, Araujo RV, Cirqueira CS, et al. Differential expression of stem cell markers in human adamantinomatous craniopharyngioma and pituitary adenoma[J]. Neuroendocrinology, 2017, 104(2): 183-193. DOI: 10.1159/000446072.
|
[17] |
Herranz H, Cohen SM. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems[J]. Genes Dev, 2010, 24(13): 1339-1344. DOI: 10.1101/gad.1937010.
|
[18] |
Dragomir MP, Knutsen E, Calin GA. Classical and noncanonical functions of miRNAs in cancers[J]. Trends Genet, 2022, 38(4): 379-394. DOI: 10.1016/j.tig.2021.10.002.
|
[19] |
Ye D, Shen Z, Zhou S. Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment[J]. Cancer Manag Res, 2019, 11: 969-979. DOI: 10.2147/cmar.S191696.
|
[20] |
Wang J, Zhang H, Situ J, et al. KCNQ1OT1 aggravates cell proliferation and migration in bladder cancer through modulating miR-145-5p/PCBP2 axis[J]. Cancer Cell Int, 2019, 19: 325. DOI: 10.1186/s12935-019-1039-z.
|
[21] |
Matsushita R, Yoshino H, Enokida H, et al. Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness[J]. Oncotarget, 2016, 7(19): 28460-28487. DOI: 10.18632/oncotarget.8668.
|
[22] |
Wu Z, Huang W, Wang X, et al. Circular RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating SOX11[J]. Mol Med, 2018, 24(1): 40. DOI: 10.1186/s10020-018-0039-0.
|
[23] |
Zhang L, Wang X, Li Y, et al. c-Myb facilitates immune escape of esophageal adenocarcinoma cells through the miR-145-5p/SPOP/PD-L1 axis[J]. Clin Transl Med, 2021, 11(9): e464. DOI: 10.1002/ctm2.464.
|
[24] |
Lawson J, Dickman C, MacLellan S, et al. Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells[J]. Oncotarget, 2017, 8(48): 83913-83924. DOI: 10.18632/oncotarget.19996.
|
[25] |
Panda M, Tripathi SK, Biswal BK. SOX9: an emerging driving factor from cancer progression to drug resistance[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188517. DOI: 10.1016/j.bbcan.2021.188517.
|
[26] |
Andre F, Arnedos M, Baras AS, et al. AACR project GENIE: powering precision medicine through an international consortium[J]. Cancer Discov, 2017, 7(8): 818-831. DOI: 10.1158/2159-8290.Cd-17-0151.
|
[27] |
Aleman A, Adrien L, Lopez-Serra L, et al. Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays[J]. Br J Cancer, 2008, 98(2): 466-473. DOI: 10.1038/sj.bjc.6604143.
|
[28] |
Passeron T, Valencia JC, Namiki T, et al. Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid[J]. J Clin Invest, 2009, 119(4): 954-963. DOI: 10.1172/jci34015.
|
[29] |
Wang HY, Lian P, Zheng PS. SOX9, a potential tumor suppressor in cervical cancer, transactivates p21WAF1/CIP1 and suppresses cervical tumor growth[J]. Oncotarget, 2015, 6(24): 20711-20722. DOI: 10.18632/oncotarget.4133.
|
[30] |
Yu CC, Tsai LL, Wang ML, et al. miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer [J]. Cancer Res, 2013, 73(11): 3425-3440. DOI: 10.1158/0008-5472.Can-12-3840.
|
[31] |
Li Y, Liu J, Piao J, et al. Circ_0109046 promotes the malignancy of endometrial carcinoma cells through the microRNA-105/SOX9/Wnt/β-catenin axis[J]. IUBMB Life, 2021, 73(1): 159-176. DOI: 10.1002/iub.2415.
|
[32] |
Tian H, Hou L, Xiong Y, et al. Dexmedetomidine upregulates microRNA-185 to suppress ovarian cancer growth via inhibiting the SOX9/Wnt/β-catenin signaling pathway[J]. Cell Cycle, 2021, 20(8): 765-780. DOI: 10.1080/15384101.2021.1897270.
|
[33] |
Ma F, Ye H, He HH, et al. SOX9 drives WNT pathway activation in prostate cancer[J]. J Clin Invest, 2016, 126(5): 1745-1758. DOI: 10.1172/jci78815.
|
[34] |
Liu H, Liu Z, Jiang B, et al. Sox9 overexpression promotes glioma metastasis via wnt/β-catenin signaling[J]. Cell Biochem Biophys, 2015, 73(1): 205-212. DOI: 10.1007/s12013-015-0647-z.
|
[35] |
Guo YZ, Xie XL, Fu J, et al. SOX9 regulated proliferation and apoptosis of human lung carcinoma cells by the Wnt/β-catenin signaling pathway [J]. Eur Rev Med Pharmacol Sci, 2018, 22(15): 4898-4907. DOI: 10.26355/eurrev_201808_15626.
|
[36] |
Galera-Ruiz H, Ríos-Moreno MJ, González-Cámpora R, et al. WNT pathway in laryngeal squamous cell carcinoma and nasopharyngeal carcinoma[J]. Acta Otorhinolaryngol Ital, 2012, 32(2): 122-123.
|
[37] |
Reyes M, Taghvaei M, Yu S, et al. Targeted therapy in the management of modern craniopharyngiomas[J]. Front Biosci (Landmark Ed), 2022, 27(4): 136. DOI: 10.31083/j.fbl2704136.
|
[38] |
Zhao C, Wang Y, Liu H, et al. Molecular biological features of cyst wall of adamantinomatous craniopharyngioma[J]. Sci Rep, 2023, 13(1): 3049. DOI: 10.1038/s41598-023-29664-z.
|