切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 6 -15. doi: 10.3877/cma.j.issn.2095-9141.2024.01.002

基础研究

miR-145-5p抑制造釉细胞型颅咽管瘤细胞增殖、侵袭和SOX9/β-catenin表达
夏可顺1, 黄耀辉1, 王茂1, 刘志勇2, 谭博1, 宋鹏1, 印晓鸿1,()   
  1. 1. 628099 四川广元,川北医学院附属广元市中心医院神经外科
    2. 610044 成都,四川大学华西医院神经外科
  • 收稿日期:2023-08-25 出版日期:2024-02-15
  • 通信作者: 印晓鸿

miR-145-5p inhibits proliferation, invasion and SOX9/β-catenin expression of adamantinomatous craniopharyngioma cells

Keshun Xia1, Yaohui Huang1, Mao Wang1, Zhiyong Liu2, Bo Tan1, Peng Song1, Xiaohong Yin1,()   

  1. 1. Department of Neurosurgery, Guangyuan Central Hospital Affiliated to North Sichuan Medical College, Guangyuan 628099, China
    2. Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610044, China
  • Received:2023-08-25 Published:2024-02-15
  • Corresponding author: Xiaohong Yin
  • Supported by:
    Key Clinical Specialty Construction Project of Sichuan Province (2022)
引用本文:

夏可顺, 黄耀辉, 王茂, 刘志勇, 谭博, 宋鹏, 印晓鸿. miR-145-5p抑制造釉细胞型颅咽管瘤细胞增殖、侵袭和SOX9/β-catenin表达[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 6-15.

Keshun Xia, Yaohui Huang, Mao Wang, Zhiyong Liu, Bo Tan, Peng Song, Xiaohong Yin. miR-145-5p inhibits proliferation, invasion and SOX9/β-catenin expression of adamantinomatous craniopharyngioma cells[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(01): 6-15.

目的

探究miR-145-5p对造釉细胞型颅咽管瘤(aCP)细胞增殖、侵袭和凋亡的影响及作用机制。

方法

选取2019年9月至2022年9月在四川大学华西医院和广元市中心医院神经外科术中切除的aCP和乳头状颅咽管瘤(pCP)各5例。采用实时荧光定量PCR(qRT-PCR)检测aCP和pCP中miR-145-5p、SOX9、CTNNB1(β-catenin基因)mRNA的表达差异,采用免疫荧光及Western blot检测SOX9、β-catenin蛋白的表达;通过CCK8实验、Transwell小室及流式细胞术分别检测颅咽管瘤细胞的增殖、侵袭和凋亡水平。将aCP细胞分为aCP组(空白对照,未转染)、aCP+miR-145-5p control组(阴性对照)、aCP+miR-145-5p mimic组(过表达),研究miR-145-5p对aCP细胞的增殖、侵袭和凋亡及SOX9、β-catenin表达的影响。

结果

与pCP相比,aCP细胞中miR-145-5p mRNA表达明显降低,SOX9、CTNNB1 mRNA、SOX9及胞核β-catenin蛋白表达明显增高,胞质β-catenin蛋白表达略降低,细胞增殖和侵袭显著增强,差异均有统计学意义(P<0.05)。aCP组、aCP+miR-145-5p control组和aCP+miR-145-5p mimic组在miR-145-5p、SOX9、CTNNB1 mRNA,SOX9、胞核β-catenin、胞质β-catenin蛋白表达以及细胞增殖和侵袭方面比较,差异均有统计学意义(P<0.05)。两两比较显示,aCP+miR-145-5p mimic组较其他2组miR-145-5p mRNA表达显著升高,细胞增殖和侵袭减弱,凋亡增加,SOX9、CTNNB1 mRNA表达明显降低;aCP+miR-145-5p mimic组较aCP+miR-145-5p control组SOX9、胞核β-catenin蛋白表达明显降低,胞质β-catenin蛋白表达略升高,差异均有统计学意义(P<0.05)。

结论

miR-145-5p可能通过下调SOX9、β-catenin抑制aCP的增殖、侵袭能力,促进细胞凋亡。

Objective

To investigate the effects of miR-145-5p on the proliferation, invasion, and apoptosis of adamantinomatous craniopharyngioma (aCP) cells and its mechanism of action.

Methods

Five cases of aCP and five cases of papillary craniopharyngioma (pCP) resected at Neurosurgery Department of West China Hospital of Sichuan University and Guangyuan Central Hospital from September 2019 to September 2022 were selected. The expression differences of miR-145-5p, SOX9, and CTNNB1 (β-catenin gene) mRNA in aCP and pCP were detected by real-time fluorescence quantitative PCR (qRT-PCR). The expression of SOX9 and β-catenin proteins were detected by immunofluorescence and Western blot. The proliferation, invasion, and apoptosis levels of craniopharyngioma cells were measured through CCK8 assay, Transwell chamber, and flow cytometry, respectively. aCP cells were divided into aCP group (blank control, untransfected), aCP+miR-145-5p control group (negative control), and aCP+miR-145-5p mimic group (overexpression) to study the effects of miR-145-5p on the proliferation, invasion, and apoptosis of aCP cells and on the expression of SOX9 and β-catenin.

Results

Compared with pCP, aCP cells showed significantly reduced expression of miR-145-5p mRNA and increased expression of SOX9、CTNNB1 mRNA, SOX9、nuclear β-catenin proteins, and a decreased in cytoplasmic β-catenin protein expression, concurrently, cell proliferation and invasion were significantly enhanced, with all differences being statistically significant (P<0.05). There were differences among the aCP group, aCP+miR-145-5p control group, and aCP+miR-145-5p mimic group in terms of miR-145-5p, SOX9, and CTNNB1 mRNA expression, as well as SOX9, nuclear β-catenin, and cytoplasmic β-catenin protein expression, and in cell proliferation and invasion (P<0.05). Pairwise comparisons between groups showed that the aCP+miR-145-5p mimic group had significantly increased expression of miR-145-5p mRNA, weakened proliferation and invasion, and increased apoptosis compared to the other two groups. The expression of SOX9 and CTNNB1 mRNA was significantly reduced. Compared to the aCP+miR-145-5p control group, the expression of SOX9 and nuclear β-catenin proteins decreased, while cytoplasmic β-catenin protein expression increased in the aCP+miR-145-5p mimic group, with all differences being statistically significant (P<0.05).

Conclusion

miR-145-5p may inhibit the proliferation、invasion of aCP and promote cell apoptosis by down-regulating the SOX9 and β-catenin.

表1 qRT-PCR所用引物序列
Tab.1 Primer sequences for qRT-PCR
图1 aCP和pCP原代细胞pan-CK表达水平(×400)aCP:造釉细胞型颅咽管瘤;pCP:乳头状颅咽管瘤
Fig.1 pan-CK expression in primary cells of aCP and pCP (×400)
图2 Transwell检测aCP和pCP原代细胞的侵袭能力(×200)A:pCP细胞;B:aCP细胞;aCP:造釉细胞型颅咽管瘤;pCP:乳头状颅咽管瘤
Fig.2 The invasion ability of aCP and pCP primary cells was detected by Transwell assay(×200)
图3 免疫荧光检测aCP和pCP细胞中SOX9、β-catenin表达(×200)A:aCP和pCP细胞中SOX9表达;B:aCP和pCP细胞中β-catenin表达;aCP:造釉细胞型颅咽管瘤;pCP:乳头状颅咽管瘤
Fig.3 Immunofluorescence detect the expression of SOX9 and β-catenin in aCP and pCP primary cells (×200)
图4 Western blot检测aCP和pCP原代细胞中SOX9、β-catenin表达水平A:SOX9、β-catenin表达的电泳条带图;B:SOX9、β-catenin表达水平比较;与pCP比较,aP<0.05;aCP:造釉细胞型颅咽管瘤;pCP:乳头状颅咽管瘤
Fig.4 Western blot detect the expression of SOX9 and β-catenin in aCP and pCP primary cells
表2 qRT-PCR检测miR-145-5p、SOX9及CTNNB1在aCP和pCP细胞中的表达(±s
Tab.2 Expressions of miR-145-5p, SOX9 and CTNNB1 in aCP and pCP cells detected by qRT-PCR (Mean±SD)
图5 Transwell检测miR-145-5p对aCP细胞侵袭能力的影响(×400)A:aCP组;B:aCP+miR-145-5p control组;C:aCP+miR-145-5p mimic组;aCP:造釉细胞型颅咽管瘤
Fig.5 Transwell assay detect the effect of miR-145-5p on invasive ability of aCP cells(×400)
图6 流式细胞术检测miR-145-5p对aCP细胞凋亡的影响A:aCP组;B:aCP+miR-145-5p control组;C:aCP+miR-145-5p mimic组;aCP:造釉细胞型颅咽管瘤
Fig.6 Flow cytometry detect the effect of miR-145-5p on apoptosis of aCP cells
表3 miR-145-5p对aCP细胞增殖、侵袭和凋亡的影响(±s
Tab.3 Effects of miR-145-5p on proliferation, invasion and apoptosis of aCP cells(Mean±SD
图7 免疫荧光检测miR-145-5p对aCP细胞中SOX9、β-catenin蛋白表达的影响(×400)A:3组SOX9免疫荧光图;B:3组β-catenin免疫荧光图;aCP:造釉细胞型颅咽管瘤
Fig.7 Immunofluorescence detect the effect of miR-145-5p on the expression of SOX9 and β-catenin in aCP cells (×400)
图8 Western blot检测miR-145-5p对aCP细胞中SOX9、β-catenin蛋白表达的影响A:3组细胞SOX9、β-catenin表达的电泳条带图;1:aCP组;2:aCP+miR-145-5p control组;3:aCP+miR-145-5p mimic组;B:3组细胞SOX9、β-catenin蛋白表达水平比较;与aCP组比较,aP<0.05;与aCP+miR-145-5p control组比较,bP<0.05;aCP:造釉细胞型颅咽管瘤
Fig.8 Western blot detect the effect of miR-145-5p on the expression of SOX9 and β-catenin protein in aCP cells
表4 miR-145-5p对aCP细胞中SOX9、CTNNB1 mRNA表达的影响
Tab.4 Effect of miR-145-5p on the expression of SOX9 and CTNNB1 mRNA in aCP cells
[1]
Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[2]
Zacharia BE, Bruce SS, Goldstein H, et al. Incidence, treatment and survival of patients with craniopharyngioma in the surveillance, epidemiology and end results program[J]. Neuro Oncol, 2012, 14(8): 1070-1078. DOI: 10.1093/neuonc/nos142.
[3]
Momin AA, Recinos MA, Cioffi G, et al. Descriptive epidemiology of craniopharyngiomas in the United States[J]. Pituitary, 2021, 24(4): 517-522. DOI: 10.1007/s11102-021-01127-6.
[4]
Otte A, Müller HL. Childhood-onset craniopharyngioma[J]. J Clin Endocrinol Metab, 2021, 106(10): e3820-e3836. DOI: 10.1210/clinem/dgab397.
[5]
Mallucci C, Pizer B, Blair J, et al. Management of craniopharyngioma: the Liverpool experience following the introduction of the CCLG guidelines. Introducing a new risk assessment grading system[J]. Childs Nerv Syst, 2012, 28(8): 1181-1192. DOI: 10.1007/s00381-012-1787-8.
[6]
Puget S, Garnett M, Wray A, et al. Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement[J]. J Neurosurg, 2007, 106(1 Suppl): 3-12. DOI: 10.3171/ped.2007.106.1.3.
[7]
Park HJ, Dho YS, Kim JH, et al. Recurrence rate and prognostic factors for the adult craniopharyngiomas in long-term follow-up[J]. World Neurosurg, 2020, 133: e211-e217. DOI: 10.1016/j.wneu.2019.08.209.
[8]
Castro-Dufourny I, Carrasco R, Prieto R, et al. The first sixty-five craniopharyngioma operations in France[J]. Rev Neurol (Paris), 2017, 173(4): 180-188. DOI: 10.1016/j.neurol.2016.12.030.
[9]
Wu J, Wu X, Yang YQ, et al. Association of histological subtype with risk of recurrence in craniopharyngioma patients: a systematic review and meta-analysis[J]. Neurosurg Rev, 2022, 45(1): 139-150. DOI: 10.1007/s10143-021-01563-9.
[10]
Dong M, Xu T, Li H, et al. LINC00052 promotes breast cancer cell progression and metastasis by sponging miR-145-5p to modulate TGFBR2 expression[J]. Oncol Lett, 2021, 21(5): 368. DOI: 10.3892/ol.2021.12629.
[11]
Kadkhoda S, Ghafouri-Fard S. Function of miRNA-145-5p in the pathogenesis of human disorders[J]. Pathol Res Pract, 2022, 231: 153780. DOI: 10.1016/j.prp.2022.153780.
[12]
Chen J, Chen T, Zhu Y, et al. circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma[J]. J Exp Clin Cancer Res, 2019, 38(1): 398. DOI: 10.1186/s13046-019-1376-8.
[13]
Rani SB, Rathod SS, Karthik S, et al. MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells[J]. Neuro Oncol, 2013, 15(10): 1302-1316. DOI: 10.1093/neuonc/not090.
[14]
Campanini ML, Colli LM, Paixao BM, et al. CTNNB1 gene mutations, pituitary transcription factors, and MicroRNA expression involvement in the pathogenesis of adamantinomatous craniopharyngiomas[J]. Horm Cancer, 2010, 1(4): 187-196. DOI: 10.1007/s12672-010-0041-7.
[15]
Chen S, Deng X, Sheng H, et al. Noncoding RNAs in pediatric brain tumors: molecular functions and pathological implications[J]. Mol Ther Nucleic Acids, 2021, 26417-431. DOI: 10.1016/j.omtn.2021.07.024.
[16]
Chang CV, Araujo RV, Cirqueira CS, et al. Differential expression of stem cell markers in human adamantinomatous craniopharyngioma and pituitary adenoma[J]. Neuroendocrinology, 2017, 104(2): 183-193. DOI: 10.1159/000446072.
[17]
Herranz H, Cohen SM. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems[J]. Genes Dev, 2010, 24(13): 1339-1344. DOI: 10.1101/gad.1937010.
[18]
Dragomir MP, Knutsen E, Calin GA. Classical and noncanonical functions of miRNAs in cancers[J]. Trends Genet, 2022, 38(4): 379-394. DOI: 10.1016/j.tig.2021.10.002.
[19]
Ye D, Shen Z, Zhou S. Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment[J]. Cancer Manag Res, 2019, 11: 969-979. DOI: 10.2147/cmar.S191696.
[20]
Wang J, Zhang H, Situ J, et al. KCNQ1OT1 aggravates cell proliferation and migration in bladder cancer through modulating miR-145-5p/PCBP2 axis[J]. Cancer Cell Int, 2019, 19: 325. DOI: 10.1186/s12935-019-1039-z.
[21]
Matsushita R, Yoshino H, Enokida H, et al. Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness[J]. Oncotarget, 2016, 7(19): 28460-28487. DOI: 10.18632/oncotarget.8668.
[22]
Wu Z, Huang W, Wang X, et al. Circular RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating SOX11[J]. Mol Med, 2018, 24(1): 40. DOI: 10.1186/s10020-018-0039-0.
[23]
Zhang L, Wang X, Li Y, et al. c-Myb facilitates immune escape of esophageal adenocarcinoma cells through the miR-145-5p/SPOP/PD-L1 axis[J]. Clin Transl Med, 2021, 11(9): e464. DOI: 10.1002/ctm2.464.
[24]
Lawson J, Dickman C, MacLellan S, et al. Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells[J]. Oncotarget, 2017, 8(48): 83913-83924. DOI: 10.18632/oncotarget.19996.
[25]
Panda M, Tripathi SK, Biswal BK. SOX9: an emerging driving factor from cancer progression to drug resistance[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188517. DOI: 10.1016/j.bbcan.2021.188517.
[26]
Andre F, Arnedos M, Baras AS, et al. AACR project GENIE: powering precision medicine through an international consortium[J]. Cancer Discov, 2017, 7(8): 818-831. DOI: 10.1158/2159-8290.Cd-17-0151.
[27]
Aleman A, Adrien L, Lopez-Serra L, et al. Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays[J]. Br J Cancer, 2008, 98(2): 466-473. DOI: 10.1038/sj.bjc.6604143.
[28]
Passeron T, Valencia JC, Namiki T, et al. Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid[J]. J Clin Invest, 2009, 119(4): 954-963. DOI: 10.1172/jci34015.
[29]
Wang HY, Lian P, Zheng PS. SOX9, a potential tumor suppressor in cervical cancer, transactivates p21WAF1/CIP1 and suppresses cervical tumor growth[J]. Oncotarget, 2015, 6(24): 20711-20722. DOI: 10.18632/oncotarget.4133.
[30]
Yu CC, Tsai LL, Wang ML, et al. miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer [J]. Cancer Res, 2013, 73(11): 3425-3440. DOI: 10.1158/0008-5472.Can-12-3840.
[31]
Li Y, Liu J, Piao J, et al. Circ_0109046 promotes the malignancy of endometrial carcinoma cells through the microRNA-105/SOX9/Wnt/β-catenin axis[J]. IUBMB Life, 2021, 73(1): 159-176. DOI: 10.1002/iub.2415.
[32]
Tian H, Hou L, Xiong Y, et al. Dexmedetomidine upregulates microRNA-185 to suppress ovarian cancer growth via inhibiting the SOX9/Wnt/β-catenin signaling pathway[J]. Cell Cycle, 2021, 20(8): 765-780. DOI: 10.1080/15384101.2021.1897270.
[33]
Ma F, Ye H, He HH, et al. SOX9 drives WNT pathway activation in prostate cancer[J]. J Clin Invest, 2016, 126(5): 1745-1758. DOI: 10.1172/jci78815.
[34]
Liu H, Liu Z, Jiang B, et al. Sox9 overexpression promotes glioma metastasis via wnt/β-catenin signaling[J]. Cell Biochem Biophys, 2015, 73(1): 205-212. DOI: 10.1007/s12013-015-0647-z.
[35]
Guo YZ, Xie XL, Fu J, et al. SOX9 regulated proliferation and apoptosis of human lung carcinoma cells by the Wnt/β-catenin signaling pathway [J]. Eur Rev Med Pharmacol Sci, 2018, 22(15): 4898-4907. DOI: 10.26355/eurrev_201808_15626.
[36]
Galera-Ruiz H, Ríos-Moreno MJ, González-Cámpora R, et al. WNT pathway in laryngeal squamous cell carcinoma and nasopharyngeal carcinoma[J]. Acta Otorhinolaryngol Ital, 2012, 32(2): 122-123.
[37]
Reyes M, Taghvaei M, Yu S, et al. Targeted therapy in the management of modern craniopharyngiomas[J]. Front Biosci (Landmark Ed), 2022, 27(4): 136. DOI: 10.31083/j.fbl2704136.
[38]
Zhao C, Wang Y, Liu H, et al. Molecular biological features of cyst wall of adamantinomatous craniopharyngioma[J]. Sci Rep, 2023, 13(1): 3049. DOI: 10.1038/s41598-023-29664-z.
[1] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[2] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[3] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[4] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[5] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[6] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[7] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[8] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[9] 赵旭鹏, 王集琛, 田硕, 李宏召, 李修彬, 张旭. EP300 通过上调FKBP10 促进膀胱肿瘤细胞迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 264-274.
[10] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[11] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[12] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[13] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[14] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[15] 朱镭, 朱庆义. 金氏菌属:引起婴幼儿侵袭性传染病的新发病原体[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(04): 229-237.
阅读次数
全文


摘要