切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (03) : 150 -154. doi: 10.3877/cma.j.issn.2095-9141.2022.03.004

临床研究

血小板-淋巴细胞比值对颅脑损伤患者6个月预后的预测价值
王绅1, 徐旭旭2, 王如海3,()   
  1. 1. 200127 上海市嘉定区中心医院神经外科
    2. 201199 上海市闵行区中心医院神经外科
    3. 236063 阜阳市第五人民医院神经外科
  • 收稿日期:2022-01-25 出版日期:2022-06-15
  • 通信作者: 王如海

Prognostic value of platelet-to-lymphocyte ratio in predicting the 6-month outcome of patients with traumatic brain injury

Shen Wang1, Xuxu Xu2, Ruhai Wang3,()   

  1. 1. Department of Neurosurgery, Shanghai Jiading District Central Hospital, Shanghai 200127, China
    2. Department of Neurosurgery, Shanghai Minhang District Central Hospital, Shanghai 201199, China
    3. Department of Neurosurgery, Fuyang Fifth People’s Hospital, Fuyang 236063, China
  • Received:2022-01-25 Published:2022-06-15
  • Corresponding author: Ruhai Wang
引用本文:

王绅, 徐旭旭, 王如海. 血小板-淋巴细胞比值对颅脑损伤患者6个月预后的预测价值[J/OL]. 中华神经创伤外科电子杂志, 2022, 08(03): 150-154.

Shen Wang, Xuxu Xu, Ruhai Wang. Prognostic value of platelet-to-lymphocyte ratio in predicting the 6-month outcome of patients with traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(03): 150-154.

目的

探讨血小板-淋巴细胞比值(PLR)预测颅脑损伤(TBI)患者6个月预后的价值。

方法

回顾性分析安徽省阜阳市第五人民医院神经外科自2017年1月至2021年2月收治的346例TBI患者的临床资料。根据患者出院后6个月的扩展格拉斯哥预后(GOS-E)量表评分将患者分为预后不良组(GOS-E评分≤4分)和预后良好组(GOS-E评分5~8分)。通过单因素和多因素Logistic回归分析影响预后不良的危险因素。建立3个基于入院时临床资料的预测模型,采用受试者工作特征(ROC)曲线和曲线下面积(AUC)分析PLR对TBI患者6个月预后的预测价值。

结果

346例TBI患者中,280例患者预后良好(预后良好组),66例患者预后不良(预后不良组)。单因素分析和多因素Logistic回归分析结果显示,高龄、入院时较低的GCS评分、高白细胞计数、低血小板计数和较低的PLR是TBI患者预后的独立危险因素。ROC曲线分析结果显示,结合PLR和标准变量的模型更有利于预测TBI患者6个月的预后(AUC=0.957,95%CI:0.931~0.976)。

结论

入院时PLR水平具有较好预测TBI患者6个月预后不良的价值。

Objective

To investigate the value of platelet-to-lymphocyte ratio (PLR) for predicting the 6-month outcome of patients with traumatic brain injury (TBI).

Methods

The clinical data of 346 TBI patients who were admitted to the Neurosurgery Department of Fuyang Fifth People’s Hospital of Anhui Province from January 2017 to February 2021 were retrospectively reviewed. The patients were divided into a poor prognosis group (GOS-E score ≤ 4 points) and a good prognosis group (GOS-E score 5-8 points) according to GOS-E progonosis scores at 6 months after discharge. Univariate and multivariate Logistic regression analyses were used to assess the risk factors of poor prognosis. Three predictive models based on admission characteristics were built with receiver operating characteristic (ROC) curve and area under the curve (AUC) to evaluate the prognostic value of the PLR in predicting the 6-month outcome of patients with TBI.

Results

Of 346 TBI patients, 280 patients had a good prognosis (good prognosis group) and 66 patients had a poor prognosis (poor prognosis group). The results of univariate and multivariate Logistic regression analysis showed that advanced age, low GCS score at admission, high leukocyte count, low platelet count and low PLR were independent risk factors for prognosis in patients with TBI. ROC curve analysis showed that the model combining the PLR and standard variables (AUC=0.957, 95%CI: 0.931-0.976) was more favorable in predicting 6-month outcome of patients with TBI.

Conclusion

The level of PLR at admission has great predictive value for 6-month prognosis of patients with TBI in 6 months.

表1 颅脑损伤预后影响因素的单因素分析
影响因素 预后良好组(n=280) 预后不良组(n=66) χ2/t/U P
年龄(岁,±s 56.08±16.77 63.15±15.00 -3.144 0.002
性别(男/女) 189/91 43/23 0.133 0.715
入院时GCS评分[例(%)]     144.506 <0.001
  3~8分 29(10.4) 53(80.3)    
  9~15分 251(89.6) 13(19.7)    
致伤机制[例(%)]     1.046 0.593
  跌倒 172(61.4) 39(59.1)    
  交通事故 98(35.0) 26(39.4)    
  其他 10(3.6) 1(1.5)    
合并多发伤[例(%)] 89(31.8) 28(42.4) 2.701 0.100
合并高血压[例(%)] 72(25.7) 22(33.3) 1.567 0.211
合并烟酒史[例(%)] 23(8.2) 10(15.2) 2.979 0.084
实验室检查        
  白细胞计数[109/L,M(P25,P75)] 11.31(8.87,13.87) 11.83(9.68,18.76) -2.287 <0.001
  中性粒细胞[109/L,M(P25,P75)] 9.31(6.74,12.32) 9.38(7.15,15.57) -1.313 0.003
  淋巴细胞[109/L,M(P25,P75)] 1.07(0.76,1.54) 1.21(0.77,2.99) -1.867 <0.001
  血红蛋白[g/L,M(P25,P75)] 132(119.00,145.00) 128(111.75,141.25) -1.787 0.074
  血小板计数[109/L,M(P25,P75)] 178.50(147.00,217.00) 164.50(126.00,189.25) -2.632 0.008
  血小板-中性粒细胞比值[M(P25,P75)] 18.69(13.38,27.73) 15.88(9.38,23.01) -3.222 0.001
  中性粒细胞-淋巴细胞比值[M(P25,P75)] 9.15(4.75,15.29) 9.38(3.51,17.16) -0.005 0.996
  血小板-淋巴细胞比值[M(P25,P75)] 156.69(112.53,227.67) 118.92(60.68,190.14) -3.527 <0.001
  血小板-白细胞比值[M(P25,P75)] 15.57(11.57,21.28) 12.77(8.18,16.22) -4.347 <0.001
  白蛋白[g/L,M(P25,P75)] 39.30(36.13,42.10) 33.55(30.10,37.94) -5.963 <0.001
  前白蛋白(mg/L,±s 200.28±53.90 172.30±51.28 3.828 <0.001
  凝血酶原时间[s,M(P25,P75)] 11.60(10.70,12.18) 12.15(11.60,13.90) -4.616 <0.001
  活化部分凝血活酶时间[s,M(P25,P75)] 27.60(25.70,29.60) 27.95(25.48,30.85) -0.667 0.008
  国际标准化比值[M(P25,P75)] 1.03(0.95,1.08) 1.07(1.02,1.24) -4.290 <0.001
  D-二聚体[mg/L,M(P25,P75)] 13.32(7.31,13.32) 13.32(6.69,19.02) -2.543 <0.001
表2 颅脑损伤预后影响因素的多因素Logistic回归分析
图1 不同危险因素预测预后的受试者工作特征曲线
表3 不同危险因素预测预后的曲线下面积
图2 3个预测模型的的受试者工作特征曲线
表4 3个预测模型的曲线下面积
[1]
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295.
[2]
Gao G, Wu X, Feng J, et al. Clinical characteristics and outcomes in patients with traumatic brain injury in China: a prospective, multicentre, longitudinal, observational study[J]. Lancet Neurol, 2020, 19(8): 670-677.
[3]
Qu XD, Shrestha R, Wang MD. Risk factors analysis on traumatic brain injury prognosis[J]. Chin Med Sci J, 2011, 26(2): 98-102.
[4]
柏鲁宁,赵晓平,张毅,等.影响重型颅脑损伤患者大骨瓣减压术后预后的多因素分析[J].中国神经精神疾病杂志, 2012, 38(7): 428-430.
[5]
Siwicka-Gieroba D, Malodobry K, Biernawska J, et al. The neutrophil/lymphocyte count ratio predicts mortality in severe traumatic brain injury patients[J]. J Clin Med, 2019, 8(9): 1453.
[6]
Chen J, Qu X, Li Z, et al. Peak neutrophil-to-lymphocyte ratio correlates with clinical outcomes in patients with severe traumatic brain injury[J]. Neurocrit Care, 2019, 30(2): 334-339.
[7]
李海林,耿晓增.血白细胞计数在颅脑外伤患者中的临床评估研究[J].中国急救医学, 2002, 22(10): 581-582.
[8]
Wilson JT, Pettigrew LE, Teasdale GM. Structured interviews for the Glasgow outcome scale and the extended Glasgow outcome scale: guidelines for their use[J]. J Neurotrauma, 1998, 15(8): 573-585.
[9]
Maegele M, Schöchl H, Menovsky T, et al. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management[J]. Lancet Neurol, 2017, 16(8): 630-647.
[10]
Needham EJ, Helmy A, Zanier ER, et al. The immunological response to traumatic brain injury[J]. J Neuroimmunol, 2019, 332: 112-125.
[11]
Corbett JM, Ho KM, Honeybul S. Prognostic significance of abnormal hematological parameters in severe traumatic brain injury requiring decompressive craniectomy[J]. J Neurosurg, 2019, 132(2): 545-551.
[12]
齐皓,茆翔,叶雷,等.外周血血小板计数在创伤性颅脑损伤预后判断中的研究[J].中华神经创伤外科电子杂志, 2019, 5(3): 146-149.
[13]
Zhang H, Gao L, Zhang B, et al. Prognostic value of platelet to lymphocyte ratio in non-small cell lung cancer: a systematic review and meta-analysis[J]. Sci Rep, 2016, 6: 22618.
[14]
Kim JH, Lee JY, Kim HK, et al. Prognostic significance of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with stage Ⅲ and Ⅳ colorectal cancer[J]. World J Gastroenterol, 2017, 23(3): 505-515.
[15]
Wu Y, Li C, Zhao J, et al. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict chemotherapy outcomes and prognosis in patients with colorectal cancer and synchronous liver metastasis[J]. World J Surg Oncol, 2016, 14(1): 289.
[16]
Jo S, Jeong T, Lee JB, et al. The prognostic value of platelet-to-lymphocyte ratio on in-hospital mortality in admitted adult traffic accident patients[J]. PLoS One, 2020, 15(6): e0233838.
[17]
Chen Y, Tian J, Chi B, et al. Factors associated with the development of coagulopathy after open traumatic brain injury[J]. J Clin Med, 2021, 11(1): 185.
[18]
van der Naalt J, Timmerman ME, de Koning ME, et al. Early predictors of outcome after mild traumatic brain injury (UPFRONT): an observational cohort study[J]. Lancet Neurol, 2017, 16(7): 532-540.
[19]
McNett M, Amato S, Gianakis A, et al. The four score and GCS as predictors of outcome after traumatic brain injury[J]. Neurocrit Care, 2014, 21(1): 52-57.
[20]
Nekludov M, Bellander BM, Blombäck M, et al. Platelet dysfunction in patients with severe traumatic brain injury[J]. J Neurotrauma, 2007, 24(11): 1699-706.
[1] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[2] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[3] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[4] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[5] 顾雯, 凌守鑫, 唐海利, 甘雪梅. 两种不同手术入路在甲状腺乳头状癌患者开放性根治性术中的应用比较[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 687-690.
[6] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[7] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[8] 关小玲, 周文营, 陈洪平. PTAAR在乙肝相关慢加急性肝衰竭患者短期预后中的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 841-845.
[9] 张润锦, 阳盼, 林燕斯, 刘尊龙, 刘建平, 金小岩. EB病毒相关胆管癌伴多发转移一例及国内文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 865-869.
[10] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[11] 刘郁, 段绍斌, 丁志翔, 史志涛. miR-34a-5p 在结肠癌患者的表达及其与临床特征及预后的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 485-490.
[12] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[13] 曾明芬, 王艳. 急性胰腺炎合并脂肪肝患者CT 与彩色多普勒超声诊断参数与其病情和预后的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 531-535.
[14] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[15] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
阅读次数
全文


摘要