切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (03) : 150 -154. doi: 10.3877/cma.j.issn.2095-9141.2022.03.004

临床研究

血小板-淋巴细胞比值对颅脑损伤患者6个月预后的预测价值
王绅1, 徐旭旭2, 王如海3,()   
  1. 1. 200127 上海市嘉定区中心医院神经外科
    2. 201199 上海市闵行区中心医院神经外科
    3. 236063 阜阳市第五人民医院神经外科
  • 收稿日期:2022-01-25 出版日期:2022-06-15
  • 通信作者: 王如海

Prognostic value of platelet-to-lymphocyte ratio in predicting the 6-month outcome of patients with traumatic brain injury

Shen Wang1, Xuxu Xu2, Ruhai Wang3,()   

  1. 1. Department of Neurosurgery, Shanghai Jiading District Central Hospital, Shanghai 200127, China
    2. Department of Neurosurgery, Shanghai Minhang District Central Hospital, Shanghai 201199, China
    3. Department of Neurosurgery, Fuyang Fifth People’s Hospital, Fuyang 236063, China
  • Received:2022-01-25 Published:2022-06-15
  • Corresponding author: Ruhai Wang
引用本文:

王绅, 徐旭旭, 王如海. 血小板-淋巴细胞比值对颅脑损伤患者6个月预后的预测价值[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 150-154.

Shen Wang, Xuxu Xu, Ruhai Wang. Prognostic value of platelet-to-lymphocyte ratio in predicting the 6-month outcome of patients with traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(03): 150-154.

目的

探讨血小板-淋巴细胞比值(PLR)预测颅脑损伤(TBI)患者6个月预后的价值。

方法

回顾性分析安徽省阜阳市第五人民医院神经外科自2017年1月至2021年2月收治的346例TBI患者的临床资料。根据患者出院后6个月的扩展格拉斯哥预后(GOS-E)量表评分将患者分为预后不良组(GOS-E评分≤4分)和预后良好组(GOS-E评分5~8分)。通过单因素和多因素Logistic回归分析影响预后不良的危险因素。建立3个基于入院时临床资料的预测模型,采用受试者工作特征(ROC)曲线和曲线下面积(AUC)分析PLR对TBI患者6个月预后的预测价值。

结果

346例TBI患者中,280例患者预后良好(预后良好组),66例患者预后不良(预后不良组)。单因素分析和多因素Logistic回归分析结果显示,高龄、入院时较低的GCS评分、高白细胞计数、低血小板计数和较低的PLR是TBI患者预后的独立危险因素。ROC曲线分析结果显示,结合PLR和标准变量的模型更有利于预测TBI患者6个月的预后(AUC=0.957,95%CI:0.931~0.976)。

结论

入院时PLR水平具有较好预测TBI患者6个月预后不良的价值。

Objective

To investigate the value of platelet-to-lymphocyte ratio (PLR) for predicting the 6-month outcome of patients with traumatic brain injury (TBI).

Methods

The clinical data of 346 TBI patients who were admitted to the Neurosurgery Department of Fuyang Fifth People’s Hospital of Anhui Province from January 2017 to February 2021 were retrospectively reviewed. The patients were divided into a poor prognosis group (GOS-E score ≤ 4 points) and a good prognosis group (GOS-E score 5-8 points) according to GOS-E progonosis scores at 6 months after discharge. Univariate and multivariate Logistic regression analyses were used to assess the risk factors of poor prognosis. Three predictive models based on admission characteristics were built with receiver operating characteristic (ROC) curve and area under the curve (AUC) to evaluate the prognostic value of the PLR in predicting the 6-month outcome of patients with TBI.

Results

Of 346 TBI patients, 280 patients had a good prognosis (good prognosis group) and 66 patients had a poor prognosis (poor prognosis group). The results of univariate and multivariate Logistic regression analysis showed that advanced age, low GCS score at admission, high leukocyte count, low platelet count and low PLR were independent risk factors for prognosis in patients with TBI. ROC curve analysis showed that the model combining the PLR and standard variables (AUC=0.957, 95%CI: 0.931-0.976) was more favorable in predicting 6-month outcome of patients with TBI.

Conclusion

The level of PLR at admission has great predictive value for 6-month prognosis of patients with TBI in 6 months.

表1 颅脑损伤预后影响因素的单因素分析
影响因素 预后良好组(n=280) 预后不良组(n=66) χ2/t/U P
年龄(岁,±s 56.08±16.77 63.15±15.00 -3.144 0.002
性别(男/女) 189/91 43/23 0.133 0.715
入院时GCS评分[例(%)]     144.506 <0.001
  3~8分 29(10.4) 53(80.3)    
  9~15分 251(89.6) 13(19.7)    
致伤机制[例(%)]     1.046 0.593
  跌倒 172(61.4) 39(59.1)    
  交通事故 98(35.0) 26(39.4)    
  其他 10(3.6) 1(1.5)    
合并多发伤[例(%)] 89(31.8) 28(42.4) 2.701 0.100
合并高血压[例(%)] 72(25.7) 22(33.3) 1.567 0.211
合并烟酒史[例(%)] 23(8.2) 10(15.2) 2.979 0.084
实验室检查        
  白细胞计数[109/L,M(P25,P75)] 11.31(8.87,13.87) 11.83(9.68,18.76) -2.287 <0.001
  中性粒细胞[109/L,M(P25,P75)] 9.31(6.74,12.32) 9.38(7.15,15.57) -1.313 0.003
  淋巴细胞[109/L,M(P25,P75)] 1.07(0.76,1.54) 1.21(0.77,2.99) -1.867 <0.001
  血红蛋白[g/L,M(P25,P75)] 132(119.00,145.00) 128(111.75,141.25) -1.787 0.074
  血小板计数[109/L,M(P25,P75)] 178.50(147.00,217.00) 164.50(126.00,189.25) -2.632 0.008
  血小板-中性粒细胞比值[M(P25,P75)] 18.69(13.38,27.73) 15.88(9.38,23.01) -3.222 0.001
  中性粒细胞-淋巴细胞比值[M(P25,P75)] 9.15(4.75,15.29) 9.38(3.51,17.16) -0.005 0.996
  血小板-淋巴细胞比值[M(P25,P75)] 156.69(112.53,227.67) 118.92(60.68,190.14) -3.527 <0.001
  血小板-白细胞比值[M(P25,P75)] 15.57(11.57,21.28) 12.77(8.18,16.22) -4.347 <0.001
  白蛋白[g/L,M(P25,P75)] 39.30(36.13,42.10) 33.55(30.10,37.94) -5.963 <0.001
  前白蛋白(mg/L,±s 200.28±53.90 172.30±51.28 3.828 <0.001
  凝血酶原时间[s,M(P25,P75)] 11.60(10.70,12.18) 12.15(11.60,13.90) -4.616 <0.001
  活化部分凝血活酶时间[s,M(P25,P75)] 27.60(25.70,29.60) 27.95(25.48,30.85) -0.667 0.008
  国际标准化比值[M(P25,P75)] 1.03(0.95,1.08) 1.07(1.02,1.24) -4.290 <0.001
  D-二聚体[mg/L,M(P25,P75)] 13.32(7.31,13.32) 13.32(6.69,19.02) -2.543 <0.001
表2 颅脑损伤预后影响因素的多因素Logistic回归分析
图1 不同危险因素预测预后的受试者工作特征曲线
表3 不同危险因素预测预后的曲线下面积
图2 3个预测模型的的受试者工作特征曲线
表4 3个预测模型的曲线下面积
[1]
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295.
[2]
Gao G, Wu X, Feng J, et al. Clinical characteristics and outcomes in patients with traumatic brain injury in China: a prospective, multicentre, longitudinal, observational study[J]. Lancet Neurol, 2020, 19(8): 670-677.
[3]
Qu XD, Shrestha R, Wang MD. Risk factors analysis on traumatic brain injury prognosis[J]. Chin Med Sci J, 2011, 26(2): 98-102.
[4]
柏鲁宁,赵晓平,张毅,等.影响重型颅脑损伤患者大骨瓣减压术后预后的多因素分析[J].中国神经精神疾病杂志, 2012, 38(7): 428-430.
[5]
Siwicka-Gieroba D, Malodobry K, Biernawska J, et al. The neutrophil/lymphocyte count ratio predicts mortality in severe traumatic brain injury patients[J]. J Clin Med, 2019, 8(9): 1453.
[6]
Chen J, Qu X, Li Z, et al. Peak neutrophil-to-lymphocyte ratio correlates with clinical outcomes in patients with severe traumatic brain injury[J]. Neurocrit Care, 2019, 30(2): 334-339.
[7]
李海林,耿晓增.血白细胞计数在颅脑外伤患者中的临床评估研究[J].中国急救医学, 2002, 22(10): 581-582.
[8]
Wilson JT, Pettigrew LE, Teasdale GM. Structured interviews for the Glasgow outcome scale and the extended Glasgow outcome scale: guidelines for their use[J]. J Neurotrauma, 1998, 15(8): 573-585.
[9]
Maegele M, Schöchl H, Menovsky T, et al. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management[J]. Lancet Neurol, 2017, 16(8): 630-647.
[10]
Needham EJ, Helmy A, Zanier ER, et al. The immunological response to traumatic brain injury[J]. J Neuroimmunol, 2019, 332: 112-125.
[11]
Corbett JM, Ho KM, Honeybul S. Prognostic significance of abnormal hematological parameters in severe traumatic brain injury requiring decompressive craniectomy[J]. J Neurosurg, 2019, 132(2): 545-551.
[12]
齐皓,茆翔,叶雷,等.外周血血小板计数在创伤性颅脑损伤预后判断中的研究[J].中华神经创伤外科电子杂志, 2019, 5(3): 146-149.
[13]
Zhang H, Gao L, Zhang B, et al. Prognostic value of platelet to lymphocyte ratio in non-small cell lung cancer: a systematic review and meta-analysis[J]. Sci Rep, 2016, 6: 22618.
[14]
Kim JH, Lee JY, Kim HK, et al. Prognostic significance of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with stage Ⅲ and Ⅳ colorectal cancer[J]. World J Gastroenterol, 2017, 23(3): 505-515.
[15]
Wu Y, Li C, Zhao J, et al. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict chemotherapy outcomes and prognosis in patients with colorectal cancer and synchronous liver metastasis[J]. World J Surg Oncol, 2016, 14(1): 289.
[16]
Jo S, Jeong T, Lee JB, et al. The prognostic value of platelet-to-lymphocyte ratio on in-hospital mortality in admitted adult traffic accident patients[J]. PLoS One, 2020, 15(6): e0233838.
[17]
Chen Y, Tian J, Chi B, et al. Factors associated with the development of coagulopathy after open traumatic brain injury[J]. J Clin Med, 2021, 11(1): 185.
[18]
van der Naalt J, Timmerman ME, de Koning ME, et al. Early predictors of outcome after mild traumatic brain injury (UPFRONT): an observational cohort study[J]. Lancet Neurol, 2017, 16(7): 532-540.
[19]
McNett M, Amato S, Gianakis A, et al. The four score and GCS as predictors of outcome after traumatic brain injury[J]. Neurocrit Care, 2014, 21(1): 52-57.
[20]
Nekludov M, Bellander BM, Blombäck M, et al. Platelet dysfunction in patients with severe traumatic brain injury[J]. J Neurotrauma, 2007, 24(11): 1699-706.
[1] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[2] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[3] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[4] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[5] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[6] 鲁鑫, 许佳怡, 刘洋, 杨琴, 鞠雯雯, 徐缨龙. 早期LC术与PTCD续贯LC术治疗急性胆囊炎对患者肝功能及预后的影响比较[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 648-650.
[7] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[8] 潘冰, 吕少诚, 赵昕, 李立新, 郎韧, 贺强. 淋巴结清扫数目对远端胆管癌胰十二指肠切除手术疗效的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 608-612.
[9] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[10] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[11] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[12] 陆萍, 邹健. 凝血和纤维蛋白溶解标志物的动态变化对急性胰腺炎患者预后的评估价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 427-432.
[13] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[14] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[15] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
阅读次数
全文


摘要