切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2021, Vol. 07 ›› Issue (02) : 112 -114. doi: 10.3877/cma.j.issn.2095-9141.2021.02.011

所属专题: 文献

颅脑创伤

颅脑爆震伤的评估、病理机制及动物模型建立
王景1, 史英武1, 焦阳1, 曲宏文1, 钞敏1, 王学廉1, 屈延1, 高国栋1, 王樑1,()   
  1. 1. 710038 西安,空军军医大学唐都医院神经外科
  • 收稿日期:2020-12-25 出版日期:2021-04-15
  • 通信作者: 王樑
  • 基金资助:
    中央军委国防科技项目基金(3607064)

Assessment, neuropathological mechanism and animal model of blast-related traumatic brain injury

Jing Wang1, Yingwu Shi1, Yang Jiao1, Hongwen Qu1, Min Chao1, Xuelian Wang1, Yan Qu1, Guodong Gao1, Liang Wang1,()   

  1. 1. Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
  • Received:2020-12-25 Published:2021-04-15
  • Corresponding author: Liang Wang
引用本文:

王景, 史英武, 焦阳, 曲宏文, 钞敏, 王学廉, 屈延, 高国栋, 王樑. 颅脑爆震伤的评估、病理机制及动物模型建立[J/OL]. 中华神经创伤外科电子杂志, 2021, 07(02): 112-114.

Jing Wang, Yingwu Shi, Yang Jiao, Hongwen Qu, Min Chao, Xuelian Wang, Yan Qu, Guodong Gao, Liang Wang. Assessment, neuropathological mechanism and animal model of blast-related traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2021, 07(02): 112-114.

颅脑爆震伤(bTBI)是由于爆炸物的爆震冲击波所导致的脑组织损伤,是战时导致军队人员死亡和致残的最主要原因。bTBI主要通过致伤原因、物理爆炸力伤害以及GCS评分等方法进行伤情分级。目前主要通过自由场爆炸、爆炸管及激波管等方法模拟爆震伤的致伤机制,建立动物模型。通过动物模型模拟不同程度和类型的损伤,能够明确包括分子及细胞机制在内的神经病理学变化。本综述旨在归纳目前针对bTBI动物模型的建立,从而明确临床研究中治疗策略的问题和挑战,为提高战时bTBI救治水平提供依据。

Blast-related traumatic brain injury (bTBI) results from the detonation of explosive devices that underlie the brain damage resulting from blast overpressure exposure, and bTBI is a leading cause of mortality and morbidity in the battlefield worldwide. Injury factors, physiologic blast effects and GCS score are used to classify the injury of bTBI. The animal models can be established to simulate all kinds of severities and types of injuries, include the open-field blasts, blast tubes and shock tubes. Then we can better understand the molecular and cellular mechanisms of such neuropathology progression in bTBI. The purpose of this review article is to highlight the establishment and assessment of animal models of bTBI, to identify the problems and challenges of treatment strategies in clinical research, and to improve the treatment level of bTBI at wartime.

[1]
Thurman DJ, Alverson C, Dunn KA, et al. Traumatic brain injury in the United States: a public health perspective[J]. J Head Trauma Rehabil, 1999, 14(6): 602-615.
[2]
Jones E, Fear NT, Wessely S. Shell shock and mild traumatic brain injury: a historical review[J]. Am J Psychiatry, 2007, 164(11): 1641-1645.
[3]
Belmont Jr PJ, Goodman GP, Zacchilli M, et al. Incidence and epidemiology of combat injuries sustained during "the surge" portion of operation Iraqi freedom by a U.S. Army brigade combat team[J]. J Trauma, 2010, 68(1): 204-210.
[4]
Wilk JE, Thomas JL, McGurk DM, et al. Mild traumatic brain injury (concussion) during combat: lack of association of blast mechanism with persistent postconcussive symptoms[J]. J Head Trauma Rehabil, 2010, 25(1): 9-14.
[5]
Barman A, Chatterjee A, Bhide R. Cognitive impairment and rehabilitation strategies after traumatic brain injury[J]. Indian J Psychol Med, 2016, 38(3): 172-181.
[6]
Prasad KN, Bondy SC. Common biochemical defects linkage between post-traumatic stress disorders, mild traumatic brain injury (TBI) and penetrating TBI[J]. Brain Res, 2015, 1599: 103-114.
[7]
Hay J, Johnson VE, Smith DH, et al. Chronic traumatic encephalopathy: the neuropathological legacy of traumatic brain injury[J]. Annu Rev Pathol, 2016, 11: 21-45.
[8]
Semple BD, Zamani A, Rayner G, et al. Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy[J]. Neurobiol Dis, 2019, 123: 27-41.
[9]
Fleminger S, Oliver DL, Lovestone S, et al. Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication[J]. J Neurol Neurosurg Psychiatry, 2003, 74(7): 857-862.
[10]
Kovacs SK, Leonessa F, Ling GS. Blast TBI models, neuropathology, and implications for seizure risk[J]. Front Neurol, 2014, 5: 47.
[11]
Bryden DW, Tilghman JI, Hinds SR 2nd. Blast-related traumatic brain injury: current concepts and research considerations [J]. J Exp Neurosc, 2019, 13: 1179069519872213.
[12]
Ma X, Aravind A, Pfister BJ, et al. Animal models of traumatic brain injury and assessment of injury severity[J]. Mol Neurobiol, 2019, 56(8): 5332-5345.
[13]
Duckworth JL, Grimes J, Ling GS. Pathophysiology of battlefield associated traumatic brain injury[J]. Pathophysiology, 2013, 20(1): 23-30.
[14]
Goldstein LE, Fisher AM, Tagge CA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model[J]. Sci Transl Med, 2012, 4(134): 134ra60.
[15]
Belanger HG, Kretzmer T, Yoash-Gantz R, et al. Cognitive sequelae of blast-related versus other mechanisms of brain trauma[J]. J Int Neuropsychol Soc, 2009, 15(1): 1-8.
[16]
Arun P, Abu-Taleb R, Oguntayo S, et al. Distinct patterns of expression of traumatic brain injury biomarkers after blast exposure: role of compromised cell membrane integrity[J]. Neurosci Lett, 2013, 552: 87-91.
[17]
Bailey ZS, Grinter MB, VandeVord PJ. Astrocyte reactivity following blast exposure involves aberrant histone acetylation[J]. Front Mol Neurosci, 2016, 9: 64.
[18]
Nakagawa A, Manley GT, Gean AD, et al. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research[J]. J Neurotrauma, 2011, 28(6): 1101-1119.
[19]
Sajja VS, Hubbard WB, Hall CS, et al. Enduring deficits in memory and neuronal pathology after blast-induced traumatic brain injury[J]. Sci Rep, 2015, 5: 15075.
[20]
Sajja VS, Perrine SA, Ghoddoussi F, et al. Blast neurotrauma impairs working memory and disrupts prefrontal myo-inositol levels in rats[J]. Mol Cell Neurosci, 2014, 59: 119-126.
[21]
Cernak I, Noble-Haeusslein LJ. Traumatic brain injury: an overview of pathobiology with emphasis on military populations[J]. J Cereb Blood Flow Metab, 2010, 30(2): 255-266.
[22]
于嘉,贺世明,王占江,等.颅脑爆震伤动物模型影像学变化的实验研究[J].第四军医大学学报, 2007, 28(8): 673-675.
[23]
高波,贺世明,王占江,等.新型犬颅脑爆炸伤模型的建立[J].解放军医学杂志, 2007, 32(2): 164-166.
[24]
李彦腾,程岗,刘帅,等.舱室内爆炸致大鼠颅脑爆震伤模型的建立[J].解放军医学杂志, 2017, 42(9): 820-825.
[25]
Svetlov SI, Prima V, Kirk DR, et al. Morphologic and biochemical characterization of brain injury in a model of controlled blast overpressure exposure[J]. J Trauma, 2010, 69(4): 795-804.
[26]
Risling M, Plantman S, Angeria M, et al. Mechanisms of blast induced brain injuries, experimental studies in rats[J]. Neuroimage, 2011, 54(Suppl 1): S89-S97.
[27]
Cernak I, Merkle AC, Koliatsos VE, et al. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice[J]. Neurobiol Dis, 2011, 41(2): 538-551.
[28]
Reneer DV, Hisel RD, Hoffman JM, et al. A multi-mode shock tube for investigation of blast-induced traumatic brain injury[J]. J Neurotrauma, 2011, 28(1): 95-104.
[1] 刘逸群, 朱家安, 熊钰, 辛雨薇, 曲琳琳, 杨力, 李文雪, 田辉. 超声造影定量分析大鼠肝急性移植物抗宿主病的实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(01): 75-81.
[2] 钟轼, 李斌飞, 温君琳, 古晨, 廖小卒. 右美托咪定缓解神经病理性疼痛作用机制的研究进展[J/OL]. 中华普通外科学文献(电子版), 2023, 17(03): 237-240.
[3] 张子旭, 郑俊炯, 罗云, 林天歆. 腹腔镜肾部分切除术离体猪肾培训模型的构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 277-283.
[4] 唐瑞政, 李舒珏, 吴文起. 果蝇模型在肾结石研究中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 214-218.
[5] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[6] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[7] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J/OL]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[8] 陈业煌, 陈恺钦, 薛亮, 吴箭午, 黄预备, 魏梁锋, 曾炳香, 王守森. 改良大鼠挫伤型脊髓损伤模型的制备与评估[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 325-332.
[9] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[10] 初晨宇, 徐强, 饶军华, 李岳锋. 眶上锁孔入路手术建立食蟹猴大脑中动脉闭塞模型[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 8-13.
[11] 付强, 秦丽媛, 李全波. 神经病理性疼痛患者血清miR-15a水平及意义分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 293-298.
[12] 伍诗烨, 黄红叶, 陈水金, 林志刚. 推拿对神经病理性疼痛大鼠脊髓背角中IL-1β、IL-6及c-Fos表达的影响[J/OL]. 中华针灸电子杂志, 2024, 13(03): 96-101.
[13] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J/OL]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[14] 赵敏娴, 李海云, 王浦, 郑若彤, 申英末, 杨慧琪. 猪食管裂孔疝动物模型的建立及其应用与研究进展[J/OL]. 中华胃食管反流病电子杂志, 2023, 10(04): 196-200.
[15] 买买提·依斯热依力, 阿孜古丽·阿力木江, 吾布力卡斯木·吾拉木, 阿巴伯克力·乌斯曼, 王永康, 克力木·阿不都热依木. 结合胃食管反流病特征建立实验动物模型在培养医学研究生科研能力教学中的应用[J/OL]. 中华胃食管反流病电子杂志, 2023, 10(03): 147-150.
阅读次数
全文


摘要