切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2017, Vol. 03 ›› Issue (02) : 109 -113. doi: 10.3877/cma.j.issn.2095-9141.2017.02.012

所属专题: 文献

综述

谷氨酸受体以及兴奋性毒性研究进展
曹德茂1, 申宝玺1,(), 武永康1, 齐文涛1   
  1. 1. 225000 扬州市第一人民医院神经外科
  • 收稿日期:2017-02-12 出版日期:2017-04-15
  • 通信作者: 申宝玺

Research progress of glutamate receptors and excitability toxicity

Demao Cao1, Baoxi Shen1,(), Yongkang Wu1, Wentao Qi1   

  1. 1. Department of Neurosurgery, the First People’ Hospital of Yangzhou, Yangzhou 225000, China
  • Received:2017-02-12 Published:2017-04-15
  • Corresponding author: Baoxi Shen
  • About author:
    Corresponding author: Shen Baoxi, Email:
引用本文:

曹德茂, 申宝玺, 武永康, 齐文涛. 谷氨酸受体以及兴奋性毒性研究进展[J]. 中华神经创伤外科电子杂志, 2017, 03(02): 109-113.

Demao Cao, Baoxi Shen, Yongkang Wu, Wentao Qi. Research progress of glutamate receptors and excitability toxicity[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2017, 03(02): 109-113.

在神经系统的生理和病理过程中,谷氨酸受体以及兴奋性毒性都有着重要的作用,已有多项研究表明,其分布局限,作用广泛而副作用小,被认为是治疗包括颅脑损伤在内神经系统疾病的理想靶点之一。本文通过阅读相关文献,对谷氨酸受体以及兴奋性毒性研究的历史和进展进行回顾性分析与总结。

The glutamate receptor and excitability toxicity play an important role in the process of physiology and pathology of the nervous system,studies have shown that it has a limited distribution but has a wide range of functions and little side effects, which have been implicated as an ideal therapeutic target following nervous system diseases,including craniocerebral injury. Retrospective analyzed the history and progress of glutamate receptors and its excitatory toxicity studies by reading relevant literature.

[1]
Huria T, Beeraka NM, Al-Ghamdi B, et al. Premyelinated central axons express neurotoxic NMDA receptors: relevance to early developing white-matter injury[J]. J Cereb Blood Flow Metab, 2015, 35(4): 543-553.
[2]
Bartlett TE, Wang YT. The intersections of NMDAR-dependent synaptic plasticity and cell survival[J]. Neuropharmacology, 2013, 74: 59-68.
[3]
Paoletti P. Molecular basis of NMDA receptor functional diversity[J]. Eur J Neurosci, 2011, 33(8): 1351-1365.
[4]
Pagadala P, Park CK, Bang S, et al. Loss of NR1 subunit of NMDARs in primary sensory neurons leads to hyperexcitability and pain hypersensitivity: involvement of Ca(2+)-activated small conductance potassium channels[J]. J Neurosci, 2013, 33(33): 13425-13430.
[5]
Chung C, Marson JD, Zhang QG, et al. Neuroprotection Mediated through GluN2C-Containing N-methyl-D-aspartate(NMDA) Receptors Following Ischemia[J]. Sci Rep, 2016, 6: 37033.
[6]
Geddes AE, Huang XF, Newell KA. Reciprocal signalling between NR2 subunits of the NMDA receptor and neuregulin1 and their role in schizophrenia[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2011, 35(4): 896-904.
[7]
Zhang Z, Sun QQ. Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons[J]. Dev Neurobiol, 2011, 71(3): 221-245.
[8]
Awobuluyi M, Yang J, Ye Y, et al. Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 N-methyl-D-aspartate receptors[J]. Mol Pharmacol, 2007, 71(1): 112-122.
[9]
Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits[J]. Nature, 2002, 415(6873): 793-798.
[10]
De Rossi P, Harde E, Dupuis JP, et al. Co-activation of VEGF and NMDA receptors promotes synaptic targeting of AMPA receptors[J]. Mol Psychiatry, 2016, 21(12): 1647.
[11]
Beppu K, Kosai Y, Kido MA, et al. Expression, subunit composition, and function of AMPA-type glutamate receptors are changed in activated microglia; possible contribution of GluA2 (GluR-B)-deficiency under pathological conditions[J]. Glia, 2013, 61(6): 881-891.
[12]
Diano S, Naftolin F, Horvath TL. Kainate glutamate receptors (GluR5-7) in the rat arcuate nucleus: relationship to tanycytes, astrocytes, neurons and gonadal steroid receptors[J]. J Neuroendocrinol, 1998, 10(4): 239-247.
[13]
Kumar J, Schuck P, Mayer ML. Structure and assembly mechanism for heteromeric kainate receptors[J]. Neuron, 2011, 71(2): 319-331.
[14]
Cosgrove KE, Galvan EJ, Barrionuevo G, et al. mGluRs modulate strength and timing of excitatory transmission in hippocampal area CA3[J]. Mol Neurobiol, 2011, 44(1): 93-101.
[15]
Bhattacharyya S. Inside story of Group I Metabotropic Glutamate Receptors (mGluRs)[J]. Int J Biochem Cell Biol, 2016, 77(Pt B): 205-212.
[16]
Kiritoshi T, Neugebauer V. Group II mGluRs modulate baseline and arthritis pain-related synaptic transmission in the rat medial prefrontal cortex[J]. Neuropharmacology, 2015, 95: 388-394.
[17]
Schmidt HD, Schassburger RL, Guercio LA, et al. Stimulation of mGluR5 in the accumbens shell promotes cocaine seeking by activating PKC gamma[J]. J Neurosci, 2013, 33(35): 14160-14169.
[18]
Georgiou AL, Guo L, Cordeiro MF, et al. Changes in the modulation of retinocollicular transmission through group III mGluRs long after an increase in intraocular pressure in a rat model of glaucoma[J]. Vis Neurosci, 2012, 29(4-5): 237-246.
[19]
Shen KZ, Johnson SW. Group I mGluRs evoke K-ATP current by intracellular Ca2+ mobilization in rat subthalamus neurons[J]. J Pharmacol Exp Ther, 2013, 345(1): 139-150.
[20]
Schaffhauser H, Cai Z, Hubalek F, et al. cAMP-dependent protein kinase inhibits mGluR2 coupling to G-proteins by direct receptor phosphorylation[J]. J Neurosci, 2000, 20(15): 5663-5670.
[21]
Cattani D, de Liz Oliveira Cavalli VL, Heinz Rieg CE, et al. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity[J]. Toxicology, 2014, 320: 34-45.
[22]
Bell KF, Bent RJ, Meese-Tamuri S, et al. Calmodulin kinase IV-dependent CREB activation is required for neuroprotection via NMDA receptor-PSD95 disruption[J]. J Neurochem, 2013, 126(2): 274-287.
[23]
Zhou X, Hollern D, Liao J, et al. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors[J]. Cell Death Dis, 2013, 4: e560.
[24]
Chen F, Jiang L, Shen C, et al. Neuroprotective effect of epigallocatechin-3-gallate against N-methyl-D-aspartate-induced excitotoxicity in the adult rat retina[J]. Acta Ophthalmol, 2012, 90(8): e609-e615.
[25]
李潇潇,卢圣锋,朱冰梅,等.兴奋性氨基酸毒性与缺血性脑中风及针刺的调整作用[J].针刺研究, 2016, 41(2): 180-185.
[26]
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection[J]. Prog Neurobiol, 2014, 115: 157-188.
[27]
Severino PC, Muller Gdo A, Vandresen-Filho S, et al. Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid[J]. Life Sci, 2011, 89(15-16): 570-576.
[28]
Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury[J]. Cell Mol Life Sci, 2004,61(6):657-668.
[29]
Ye HB, Shi HB, Yin SK. Mechanisms underlying taurine protection against glutamate-induced neurotoxicity[J]. Can J Neurol Sci, 2013, 40(5): 628-634.
[30]
Afanador L, Mexhitaj I, Diaz C, et al. The role of the neuropeptide somatostatin on methamphetamine and glutamate-induced neurotoxicity in the striatum of mice[J]. Brain Res, 2013, 1510: 38-47.
[31]
Croce N, Bernardini S, Di Cecca S, et al. Hydrochloric acid alters the effect of L-glutamic acid on cell viability in human neuroblastoma cell cultures[J]. J Neurosci Methods, 2013, 217(1-2): 26-30.
[32]
Sachser RM, Santana F, Crestani AP, et al. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin[J]. Sci Rep, 2016, 6: 22771.
[33]
Kumar A, Singh RL, Babu GN. Cell death mechanisms in the early stages of acute glutamate neurotoxicity[J]. Neurosci Res, 2010, 66(3): 271-278.
[34]
Rameau GA, Tukey DS, Garcin-Hosfield ED, et al. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death[J]. J Neurosci, 2007, 27(13): 3445-3455.
[35]
Wu PH, Coultrap SJ, Browning MD, et al. Functional adaptation of the N-methyl-D-aspartate receptor to inhibition by ethanol is modulated by striatal-enriched protein tyrosine phosphatase and p38 mitogen-activated protein kinase[J]. Mol Pharmacol, 2011, 80(3): 529-537.
[36]
Lau C G, Takeuchi K, Rodenas-Ruano A, et al. Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity[J]. Biochem Soc Trans, 2009, 37(Pt 6): 1369-1374.
[37]
Bodhinathan K, Kumar A, Foster TC. Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II[J]. J Neurosci, 2010, 30(5): 1914-1924.
[38]
Lu CW, Lin TY, Wang SJ. Memantine depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebral cortex nerve terminals: an NMDA receptor-independent mechanism[J]. Neurochem Int, 2010, 57(2): 168-176.
[39]
Vs SK, Gopalakrishnan A, Naziroglu M, et al. Calcium ion-The Key Player in Cerebral Ischemia[J]. Curr Med Chem, 2014, 21(18): 2065-2075.
[40]
McGee MA, Abdel-Rahman AA. Enhanced vascular neuronal nitric-oxide synthase-derived nitric-oxide production underlies the pressor response caused by peripheral N-methyl-D-aspartate receptor activation in conscious rats[J]. J Pharmacol Exp Ther, 2012, 342(2): 461-471.
[41]
Hu Z, Bian X, Liu X, et al. Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction[J]. Brain Res, 2013, 1491: 204-212.
[42]
Wang Y, Rao W, Zhang C, et al. Scaffolding protein Homer1a protects against NMDA-induced neuronal injury[J]. Cell Death Dis, 2015, 6(8): e1843.
[43]
Courtney MJ, Li LL, Lai YY. Mechanisms of NOS1AP action on NMDA receptor-nNOS signaling[J]. Front Cell Neurosci, 2014, 8: 252.
[44]
Di JH, Li C, Yu HM, et al. nNOS downregulation attenuates neuronal apoptosis by inhibiting nNOS-GluR6 interaction and GluR6 nitrosylation in cerebral ischemic reperfusion[J]. Biochem Biophys Res Commun, 2012, 420(3): 594-599.
[45]
Luo CX, Zhu DY. Research progress on neurobiology of neuronal nitric oxide synthase[J]. Neurosci Bull, 2011, 27(1): 23-35.
[46]
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection[J]. Prog Neurobiol, 2014, 115: 157-188.
[47]
Canzoniero LM, Granzotto A, Turetsky DM, et al. nNOS(+) striatal neurons, a subpopulation spared in Huntington′s Disease, possess functional NMDA receptors but fail to generate mitochondrial ROS in response to an excitotoxic challenge[J]. Front Physiol, 2013, 4: 112.
[48]
Chen Z, Muscoli C, Doyle T, et al. NMDA-receptor activation and nitroxidative regulation of the glutamatergic pathway during nociceptive processing[J]. Pain, 2010, 149(1): 100-106.
[49]
Izumi Y, Zorumski CF. Neuroprotective effects of pyruvate following NMDA-mediated excitotoxic insults in hippocampal slices[J]. Neurosci Lett, 2010, 478(3): 131-135.
[50]
Im DS, Jeon JW, Lee JS, et al. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion[J]. Brain Res, 2012, 1455: 114-123.
[51]
Yuki K, Yoshida T, Miyake S, et al. Neuroprotective role of superoxide dismutase 1 in retinal ganglion cells and inner nuclear layer cells against N-methyl-d-aspartate-induced cytotoxicity[J]. Exp Eye Res, 2013, 115: 230-238.
[52]
Gonzalez-Zulueta M, Ensz LM, Mukhina G, et al. Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity[J]. J Neurosci, 1998, 18(6): 2040-2055.
[53]
Peluffo H, Acarin L, Aris A, et al. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector[J]. BMC Neurosci, 2006, 7: 35.
[54]
Muscoli C, Mollace V, Wheatley J, et al. Superoxide-mediated nitration of spinal manganese superoxide dismutase: a novel pathway in N-methyl-D-aspartate-mediated hyperalgesia[J]. Pain, 2004, 111(1-2): 96-103.
[55]
Yoon KD, Kang SN, Bae JY, et al. Enhanced antioxidant and protective activities on retinal ganglion cells of carotenoids-overexpressing transgenic carrot[J]. Curr Drug Targets, 2013, 14(9): 999-1005.
[56]
Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration[J]. J Neurochem, 1994, 63(2): 584-591.
[57]
Yang J, Khong PL, Wang Y, et al. Manganese-enhanced MRI detection of neurodegeneration in neonatal hypoxic-ischemic cerebral injury[J]. Magn Reson Med, 2008, 59(6): 1329-1339.
[58]
Holley AK, Dhar SK, Xu Y, et al. Manganese superoxide dismutase: beyond life and death[J]. Amino Acids, 2012, 42(1): 139-158.
[59]
Dugan LL, Sensi SL, Canzoniero LM, et al. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate[J]. J Neurosci, 1995, 15(10): 6377-6388.
[60]
Reynolds IJ, Hastings TG. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation[J]. J Neurosci, 1995, 15(5 Pt 1): 3318-3327.
[61]
He Y, Cui J, Lee JC, et al. Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate[J]. ASN Neuro, 2011, 3(1): e00050.
[62]
Astori S, Lüthi A. Synaptic plasticity at intrathalamic connections via CaV3. 3 T-type Ca2+ channels and GluN2B-containing NMDA receptors[J]. J Neurosci, 2013, 33(2): 624-630.
[63]
Kouvaros S, Kotzadimitriou D, Papatheodoropoulos C. Hippocampal sharp waves and ripples: Effects of aging and modulation by NMDA receptors and L-type Ca 2+ channels[J]. Neuroscience, 2015, 298: 26-41.
[64]
Jiang X, Knox R, Pathipati P, et al. Developmental localization of NMDA receptors, Src and MAP kinases in mouse brain[J]. Neurosci Lett, 2011, 503(3): 215-219.
[65]
Lewis-Tuffin LJ, Feathers R, Hari P, et al. Src family kinases differentially influence glioma growth and motility[J]. Molecular oncology, 2015, 9(9): 1783-1798.
[66]
Chu PH, Tsygankov D, Berginski ME, et al. Engineered kinase activation reveals unique morphodynamic phenotypes and associated trafficking for Src family isoforms[J]. Proc Natl Acad Sci USA, 2014, 111(34): 12420-12425.
[67]
Liu Y, Yan JZ, Gu YH, et al. Depolarization induces NR2A tyrosine phosphorylation and neuronal apoptosis[J]. Can J Neurol Sci, 2011, 38(6): 880-886.
[68]
Park Y, Luo T, Zhang F, et al. Downregulation of Src-kinase and glutamate-receptor phosphorylation after traumatic brain injury[J]. J Cereb Blood Flow Metab, 2013, 33(10): 1642-1649.
[69]
Zhang F, Li C, Wang R, et al. Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion[J]. Neuroscience, 2007, 150(4): 938-949.
[70]
Meissirel C, Ruiz de Almodovar C, Knevels E, et al. VEGF modulates NMDA receptors activity in cerebellar granule cells through Src-family kinases before synapse formation[J]. Proc Natl Acad Sci USA, 2011, 108(33): 13782-13787.
[71]
Ruan GX, Kazlauskas A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt[J]. EMBO J, 2012, 31(7): 1692-1703.
No related articles found!
阅读次数
全文


摘要