切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2016, Vol. 02 ›› Issue (06) : 361 -364. doi: 10.3877/cma.j.issn.2095-9141.2016.06.009

所属专题: 文献

专题笔谈

免疫检查点分子与人脑胶质瘤
方景1, 李晋虎1, 范益民1,()   
  1. 1. 030001 太原,山西医科大学第一医院神经外科
  • 收稿日期:2016-05-16 出版日期:2016-12-15
  • 通信作者: 范益民
  • 基金资助:
    山西省研究生教育创新项目(2016BY081); 山西省卫计委科研课题(2015025)

Reserch progress of immune checkpoint molecules and glioma

Jing Fang1, Jinhu Li1, Yimin Fan1,()   

  1. 1. Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2016-05-16 Published:2016-12-15
  • Corresponding author: Yimin Fan
  • About author:
    Corresponding author: Fan Yimin, Email:
引用本文:

方景, 李晋虎, 范益民. 免疫检查点分子与人脑胶质瘤[J/OL]. 中华神经创伤外科电子杂志, 2016, 02(06): 361-364.

Jing Fang, Jinhu Li, Yimin Fan. Reserch progress of immune checkpoint molecules and glioma[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2016, 02(06): 361-364.

随着分子生物学及肿瘤免疫学的发展,免疫治疗已逐渐发展成为肿瘤继手术、放疗、化疗、靶向治疗的又一新兴治疗手段,通过封闭免疫检查点分子来阻断某些抑制性信号通路,可以激活机体免疫系统、增强T细胞活性、抑制肿瘤细胞免疫逃逸,继而抑制肿瘤生长,改善患者预后。本文就免疫检查点分子在胶质瘤中的最新研究进展做一综述。

With the development of molecular biology and tumor immunology, immunotherapy has gradually developed into an important strategy for cancer treatment in recent years, following surgery, radiotherapy, chemotherapy and targeted therapy. By blocking the immune checkpoint molecules to block certain inhibitory signals pathway, it can activate the immune system, enhance T cell activity, inhibit the immune escape of tumor cells, ultimately inhibit tumor growth and improve patient prognosis. In this paper, we would illustrate the reserch progress of immune checkpoint molecules in glioma.

[1]
Saunders NR, Dreifuss JJ, Dziegielewska KM, et al. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history[J]. Front Neurosci, 2014, 8: 404.
[2]
Davies DC. Blood-brain barrier breakdown in septic encephalopathy and brain tumours[J]. J Anat, 2002, 200(6): 639-646.
[3]
Rascher G, Fischmann A, Kröger S, et al. Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin[J]. Acta Neuropathol, 2002, 104(1): 85-91.
[4]
Reardon DA, Freeman G, Wu C, et al. Immunotherapy advances for glioblastoma[J]. Neuro Oncol, 2014, 16(11): 1441-1458.
[5]
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341.
[6]
Dunn GP, Dunn IF, Curry WT. Focus on TILs: Prognostic significance of tumor infiltrating lymphocytes in human glioma[J]. Cancer Immune, 2007, 7: 12.
[7]
Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system[J]. Nat Rev Immunol, 2012, 12(9): 623-635.
[8]
Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells[J]. Science, 1993, 259(5093): 368-370.
[9]
Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti-tumor immunity[J]. Immunol Rev, 2009, 229(1): 126-144.
[10]
See AP, Han JE, Phallen J, et al. The role of STAT3 activation in modulating the immune microenvironment of GBM[J]. J Neurooncol, 2012, 110(3): 359-368.
[11]
Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4[J]. Science, 1995, 270(5238): 985-988.
[12]
Quezada SA, Peggs KS, Curran MA, et al. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells[J]. J Clin Invest, 2006. 116(7): 1935-1945.
[13]
Hurwitz AA, Yu TF, Leach DR, et al. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma[J]. Proc Natl Acad Sci USA, 1998, 95(17): 10067-10071.
[14]
Fecci PE, Ochiai H, Mitchell DA, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function[J]. Clin Cancer Res, 2007, 13(7): 2158-2167.
[15]
Wainwright DA, Chang AL, Dey M, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors[J]. Clin Cancer Res, 2014, 20(20): 5290-5301.
[16]
Agarwalla P, Barnard Z, Fecci P, et al. Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors[J]. J Immunother, 2012, 35(5): 385-389.
[17]
Carter T, Shaw H, Cohn-Brown D, et al. Ipilimumab and bevacizumab in glioblastoma[J]. Clin Oncol (R Coll Radiol), 2016, pill: S0936-6555(16)30076-0
[18]
Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800.
[19]
Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677-704.
[20]
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454.
[21]
Jure-Kunkel M, Selby M, Lewis K, et al. Nonclinical evaluation of the combination of mouse IL-21 and anti-mouse CTLA-4 or PD-1 blocking antibodies in mouse tumor models[J]. J Clin Oncol, 2013, 31(15).
[22]
Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation[J]. N Engl J Med, 2015, 372(4): 320-330.
[23]
Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma[J]. Neuro Oncol, 2015, 17(8): 1064-1075.
[24]
Garber ST, Hashimoto Y, Weathers SP, et al. Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies[J]. Neuro Oncol, 2016, pill:now132.
[25]
Huang BY, Zhan YP, Zong WJ, et al. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells[J]. PLoS One, 2015, 10(8): e0134715.
[26]
Chen D, Iijima H, Nagaishi T, et al. Carcinoembryonic antigen-related cellular adhesion molecule 1 isoforms alternatively inhibit and costimulate human T cell function[J]. J Immunol, 2004, 172(6): 3535-3543.
[27]
Huang YH, Zhu C, Kondo Y, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion[J]. Nature, 2015, 517(7534): 386-390.
[28]
Ashkenazi S, Ortenberg R, Besser M, et al. SOX9 indirectly regulates CEACAM1 expression and immune resistance in melanoma cells[J]. Oncotarget. 2016.
[29]
Sapoznik S, Hammer O, Ortenberg R, et al. Novel anti-melanoma immunotherapies: disarming tumor escape mechanisms[J]. Clin Dev Immunol, 2012, 2012: 818214.
[30]
Zhang L, Wang J, Wei F, et al. Profiling the dynamic expression of checkpoint molecules on cytokine-induced killer cells from non-small-cell lung cancer patients[J]. Oncotarget, 2016.
[31]
Grosso JF, Kelleher CC, Harris TJ, et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self-and tumor-tolerance systems. J Clin Invest[J]. 2007. 117(11): 3383-3392.
[32]
Ngiow SF, von SB, Akiba H, et al. Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors[J]. Cancer Res, 2011, 71(10): 3540-3551.
[33]
Wainwright DA, Balyasnikova IV, Chang AL, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival[J]. Clin Cancer Res, 2012, 18(22): 6110-6121.
[34]
Moertel CL, Xia J, LaRue R, et al. CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy[J]. J Immunother Cancer, 2014. 2(1): 46.
[35]
Sharma P, Allison JP. The future of immune checkpoint therapy[J]. Science, 2015, 348(6230): 56-61.
[36]
Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma[J]. N Engl J Med, 2013, 369(2): 122-133.
[37]
Curran MA, Montalvo W, Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors[J]. Proc Natl Acad Sci U S A, 2010, 107(9): 4275-4280.
[38]
Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape[J]. Cancer Res, 2012, 72(4): 917-927.
[39]
Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity[J]. J Exp Med, 2010, 207(10): 2187-2194.
[1] 汤宏涛, 何坤. 中晚期肝细胞癌介入治疗的进展及前景[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 305-308.
[2] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[3] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[4] 吴伟宙, 王琼仁, 詹雄宇, 郑明星, 李亚县. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——左肾肉瘤样癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 525-529.
[5] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[6] 李飞, 郑灶松, 吴芃, 谭万龙. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——延胡索酸水合酶缺陷型晚期肾细胞癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 410-414.
[7] 邓楠, 刘平. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾盂恶性肿瘤并左肾巨大积液[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 296-299.
[8] 郑琪, 马婕群, 张彦兵, 廖子君, 张锐. EPHA5突变预测肺腺癌免疫检查点抑制剂治疗预后的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 548-552.
[9] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[10] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[11] 王龙, 武帅, 王炳智, 郑波, 李文斌, 邹霜梅. 结直肠印戒细胞癌的临床病理特征研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 229-235.
[12] 王莹莹. 神经导航联合术中神经电生理监测在脑干胶质瘤手术切除中的应用[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 293-298.
[13] 杨智钧, 谷佳, 丁聿贤, 张正奎, 于如同. 脑胶质瘤患者血清炎性因子水平与病理分级及预后的相关性[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 238-242.
[14] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
[15] 吴迪, 闫志风, 李明霞, 孟元光. 晚期子宫内膜癌免疫治疗的探索[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 231-237.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?