[1] |
Saunders NR, Dreifuss JJ, Dziegielewska KM, et al. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history[J]. Front Neurosci, 2014, 8: 404.
|
[2] |
Davies DC. Blood-brain barrier breakdown in septic encephalopathy and brain tumours[J]. J Anat, 2002, 200(6): 639-646.
|
[3] |
Rascher G, Fischmann A, Kröger S, et al. Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin[J]. Acta Neuropathol, 2002, 104(1): 85-91.
|
[4] |
Reardon DA, Freeman G, Wu C, et al. Immunotherapy advances for glioblastoma[J]. Neuro Oncol, 2014, 16(11): 1441-1458.
|
[5] |
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341.
|
[6] |
Dunn GP, Dunn IF, Curry WT. Focus on TILs: Prognostic significance of tumor infiltrating lymphocytes in human glioma[J]. Cancer Immune, 2007, 7: 12.
|
[7] |
Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system[J]. Nat Rev Immunol, 2012, 12(9): 623-635.
|
[8] |
Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells[J]. Science, 1993, 259(5093): 368-370.
|
[9] |
Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti-tumor immunity[J]. Immunol Rev, 2009, 229(1): 126-144.
|
[10] |
See AP, Han JE, Phallen J, et al. The role of STAT3 activation in modulating the immune microenvironment of GBM[J]. J Neurooncol, 2012, 110(3): 359-368.
|
[11] |
Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4[J]. Science, 1995, 270(5238): 985-988.
|
[12] |
Quezada SA, Peggs KS, Curran MA, et al. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells[J]. J Clin Invest, 2006. 116(7): 1935-1945.
|
[13] |
Hurwitz AA, Yu TF, Leach DR, et al. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma[J]. Proc Natl Acad Sci USA, 1998, 95(17): 10067-10071.
|
[14] |
Fecci PE, Ochiai H, Mitchell DA, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function[J]. Clin Cancer Res, 2007, 13(7): 2158-2167.
|
[15] |
Wainwright DA, Chang AL, Dey M, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors[J]. Clin Cancer Res, 2014, 20(20): 5290-5301.
|
[16] |
Agarwalla P, Barnard Z, Fecci P, et al. Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors[J]. J Immunother, 2012, 35(5): 385-389.
|
[17] |
Carter T, Shaw H, Cohn-Brown D, et al. Ipilimumab and bevacizumab in glioblastoma[J]. Clin Oncol (R Coll Radiol), 2016, pill: S0936-6555(16)30076-0
|
[18] |
Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800.
|
[19] |
Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677-704.
|
[20] |
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454.
|
[21] |
Jure-Kunkel M, Selby M, Lewis K, et al. Nonclinical evaluation of the combination of mouse IL-21 and anti-mouse CTLA-4 or PD-1 blocking antibodies in mouse tumor models[J]. J Clin Oncol, 2013, 31(15).
|
[22] |
Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation[J]. N Engl J Med, 2015, 372(4): 320-330.
|
[23] |
Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma[J]. Neuro Oncol, 2015, 17(8): 1064-1075.
|
[24] |
Garber ST, Hashimoto Y, Weathers SP, et al. Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies[J]. Neuro Oncol, 2016, pill:now132.
|
[25] |
Huang BY, Zhan YP, Zong WJ, et al. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells[J]. PLoS One, 2015, 10(8): e0134715.
|
[26] |
Chen D, Iijima H, Nagaishi T, et al. Carcinoembryonic antigen-related cellular adhesion molecule 1 isoforms alternatively inhibit and costimulate human T cell function[J]. J Immunol, 2004, 172(6): 3535-3543.
|
[27] |
Huang YH, Zhu C, Kondo Y, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion[J]. Nature, 2015, 517(7534): 386-390.
|
[28] |
Ashkenazi S, Ortenberg R, Besser M, et al. SOX9 indirectly regulates CEACAM1 expression and immune resistance in melanoma cells[J]. Oncotarget. 2016.
|
[29] |
Sapoznik S, Hammer O, Ortenberg R, et al. Novel anti-melanoma immunotherapies: disarming tumor escape mechanisms[J]. Clin Dev Immunol, 2012, 2012: 818214.
|
[30] |
Zhang L, Wang J, Wei F, et al. Profiling the dynamic expression of checkpoint molecules on cytokine-induced killer cells from non-small-cell lung cancer patients[J]. Oncotarget, 2016.
|
[31] |
Grosso JF, Kelleher CC, Harris TJ, et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self-and tumor-tolerance systems. J Clin Invest[J]. 2007. 117(11): 3383-3392.
|
[32] |
Ngiow SF, von SB, Akiba H, et al. Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors[J]. Cancer Res, 2011, 71(10): 3540-3551.
|
[33] |
Wainwright DA, Balyasnikova IV, Chang AL, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival[J]. Clin Cancer Res, 2012, 18(22): 6110-6121.
|
[34] |
Moertel CL, Xia J, LaRue R, et al. CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy[J]. J Immunother Cancer, 2014. 2(1): 46.
|
[35] |
Sharma P, Allison JP. The future of immune checkpoint therapy[J]. Science, 2015, 348(6230): 56-61.
|
[36] |
Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma[J]. N Engl J Med, 2013, 369(2): 122-133.
|
[37] |
Curran MA, Montalvo W, Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors[J]. Proc Natl Acad Sci U S A, 2010, 107(9): 4275-4280.
|
[38] |
Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape[J]. Cancer Res, 2012, 72(4): 917-927.
|
[39] |
Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity[J]. J Exp Med, 2010, 207(10): 2187-2194.
|