切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2016, Vol. 02 ›› Issue (06) : 361 -364. doi: 10.3877/cma.j.issn.2095-9141.2016.06.009

所属专题: 文献

专题笔谈

免疫检查点分子与人脑胶质瘤
方景1, 李晋虎1, 范益民1,()   
  1. 1. 030001 太原,山西医科大学第一医院神经外科
  • 收稿日期:2016-05-16 出版日期:2016-12-15
  • 通信作者: 范益民
  • 基金资助:
    山西省研究生教育创新项目(2016BY081); 山西省卫计委科研课题(2015025)

Reserch progress of immune checkpoint molecules and glioma

Jing Fang1, Jinhu Li1, Yimin Fan1,()   

  1. 1. Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2016-05-16 Published:2016-12-15
  • Corresponding author: Yimin Fan
  • About author:
    Corresponding author: Fan Yimin, Email:
引用本文:

方景, 李晋虎, 范益民. 免疫检查点分子与人脑胶质瘤[J]. 中华神经创伤外科电子杂志, 2016, 02(06): 361-364.

Jing Fang, Jinhu Li, Yimin Fan. Reserch progress of immune checkpoint molecules and glioma[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2016, 02(06): 361-364.

随着分子生物学及肿瘤免疫学的发展,免疫治疗已逐渐发展成为肿瘤继手术、放疗、化疗、靶向治疗的又一新兴治疗手段,通过封闭免疫检查点分子来阻断某些抑制性信号通路,可以激活机体免疫系统、增强T细胞活性、抑制肿瘤细胞免疫逃逸,继而抑制肿瘤生长,改善患者预后。本文就免疫检查点分子在胶质瘤中的最新研究进展做一综述。

With the development of molecular biology and tumor immunology, immunotherapy has gradually developed into an important strategy for cancer treatment in recent years, following surgery, radiotherapy, chemotherapy and targeted therapy. By blocking the immune checkpoint molecules to block certain inhibitory signals pathway, it can activate the immune system, enhance T cell activity, inhibit the immune escape of tumor cells, ultimately inhibit tumor growth and improve patient prognosis. In this paper, we would illustrate the reserch progress of immune checkpoint molecules in glioma.

[1]
Saunders NR, Dreifuss JJ, Dziegielewska KM, et al. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history[J]. Front Neurosci, 2014, 8: 404.
[2]
Davies DC. Blood-brain barrier breakdown in septic encephalopathy and brain tumours[J]. J Anat, 2002, 200(6): 639-646.
[3]
Rascher G, Fischmann A, Kröger S, et al. Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin[J]. Acta Neuropathol, 2002, 104(1): 85-91.
[4]
Reardon DA, Freeman G, Wu C, et al. Immunotherapy advances for glioblastoma[J]. Neuro Oncol, 2014, 16(11): 1441-1458.
[5]
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341.
[6]
Dunn GP, Dunn IF, Curry WT. Focus on TILs: Prognostic significance of tumor infiltrating lymphocytes in human glioma[J]. Cancer Immune, 2007, 7: 12.
[7]
Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system[J]. Nat Rev Immunol, 2012, 12(9): 623-635.
[8]
Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells[J]. Science, 1993, 259(5093): 368-370.
[9]
Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti-tumor immunity[J]. Immunol Rev, 2009, 229(1): 126-144.
[10]
See AP, Han JE, Phallen J, et al. The role of STAT3 activation in modulating the immune microenvironment of GBM[J]. J Neurooncol, 2012, 110(3): 359-368.
[11]
Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4[J]. Science, 1995, 270(5238): 985-988.
[12]
Quezada SA, Peggs KS, Curran MA, et al. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells[J]. J Clin Invest, 2006. 116(7): 1935-1945.
[13]
Hurwitz AA, Yu TF, Leach DR, et al. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma[J]. Proc Natl Acad Sci USA, 1998, 95(17): 10067-10071.
[14]
Fecci PE, Ochiai H, Mitchell DA, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function[J]. Clin Cancer Res, 2007, 13(7): 2158-2167.
[15]
Wainwright DA, Chang AL, Dey M, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors[J]. Clin Cancer Res, 2014, 20(20): 5290-5301.
[16]
Agarwalla P, Barnard Z, Fecci P, et al. Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors[J]. J Immunother, 2012, 35(5): 385-389.
[17]
Carter T, Shaw H, Cohn-Brown D, et al. Ipilimumab and bevacizumab in glioblastoma[J]. Clin Oncol (R Coll Radiol), 2016, pill: S0936-6555(16)30076-0
[18]
Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800.
[19]
Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677-704.
[20]
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454.
[21]
Jure-Kunkel M, Selby M, Lewis K, et al. Nonclinical evaluation of the combination of mouse IL-21 and anti-mouse CTLA-4 or PD-1 blocking antibodies in mouse tumor models[J]. J Clin Oncol, 2013, 31(15).
[22]
Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation[J]. N Engl J Med, 2015, 372(4): 320-330.
[23]
Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma[J]. Neuro Oncol, 2015, 17(8): 1064-1075.
[24]
Garber ST, Hashimoto Y, Weathers SP, et al. Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies[J]. Neuro Oncol, 2016, pill:now132.
[25]
Huang BY, Zhan YP, Zong WJ, et al. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells[J]. PLoS One, 2015, 10(8): e0134715.
[26]
Chen D, Iijima H, Nagaishi T, et al. Carcinoembryonic antigen-related cellular adhesion molecule 1 isoforms alternatively inhibit and costimulate human T cell function[J]. J Immunol, 2004, 172(6): 3535-3543.
[27]
Huang YH, Zhu C, Kondo Y, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion[J]. Nature, 2015, 517(7534): 386-390.
[28]
Ashkenazi S, Ortenberg R, Besser M, et al. SOX9 indirectly regulates CEACAM1 expression and immune resistance in melanoma cells[J]. Oncotarget. 2016.
[29]
Sapoznik S, Hammer O, Ortenberg R, et al. Novel anti-melanoma immunotherapies: disarming tumor escape mechanisms[J]. Clin Dev Immunol, 2012, 2012: 818214.
[30]
Zhang L, Wang J, Wei F, et al. Profiling the dynamic expression of checkpoint molecules on cytokine-induced killer cells from non-small-cell lung cancer patients[J]. Oncotarget, 2016.
[31]
Grosso JF, Kelleher CC, Harris TJ, et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self-and tumor-tolerance systems. J Clin Invest[J]. 2007. 117(11): 3383-3392.
[32]
Ngiow SF, von SB, Akiba H, et al. Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors[J]. Cancer Res, 2011, 71(10): 3540-3551.
[33]
Wainwright DA, Balyasnikova IV, Chang AL, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival[J]. Clin Cancer Res, 2012, 18(22): 6110-6121.
[34]
Moertel CL, Xia J, LaRue R, et al. CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy[J]. J Immunother Cancer, 2014. 2(1): 46.
[35]
Sharma P, Allison JP. The future of immune checkpoint therapy[J]. Science, 2015, 348(6230): 56-61.
[36]
Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma[J]. N Engl J Med, 2013, 369(2): 122-133.
[37]
Curran MA, Montalvo W, Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors[J]. Proc Natl Acad Sci U S A, 2010, 107(9): 4275-4280.
[38]
Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape[J]. Cancer Res, 2012, 72(4): 917-927.
[39]
Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity[J]. J Exp Med, 2010, 207(10): 2187-2194.
[1] 王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华. 超声造影在脑胶质瘤切除术术中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 755-760.
[2] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 薛永婷, 高峰, 王雅楠, 屈莲平. 溶瘤病毒治疗在结直肠癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(05): 380-384.
[5] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[6] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[7] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[8] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
[9] 陈润芝, 杨东梅, 徐慧婷. 信迪利单抗联合索凡替尼后线治疗MSS型BRAF突变的转移性结肠癌:个案报道并文献复习[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 431-435.
[10] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[11] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[12] 杨镠, 秦岚群, 耿茜, 李栋庆, 戚春建, 蒋华. 可溶性免疫检查点对胃癌患者免疫治疗疗效和预后的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 305-311.
[13] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 张琪悦, 王晓东. IL-8与肿瘤免疫的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 605-613.
阅读次数
全文


摘要