切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2016, Vol. 02 ›› Issue (06) : 355 -360. doi: 10.3877/cma.j.issn.2095-9141.2016.06.008

所属专题: 文献

基础研究

移植人羊膜间充质干细胞促进脊髓损伤大鼠神经功能恢复
周洪龙1, 张学军2, 张茂营1, 闫中杰3, 徐智敏1, 徐如祥1,()   
  1. 1. 100700 北京,解放军陆军总医院附属八一脑科医院
    2. 100700 北京,解放军陆军总医院妇产科
    3. 050000 石家庄,河北医科大学第二医院神经外科
  • 收稿日期:2016-08-18 出版日期:2016-12-15
  • 通信作者: 徐如祥
  • 基金资助:
    全军医药科技"十二五"重点项目(BWS11J002); 全军医药科技"十二五"重点项目(BWS12J010); 国家自然科学基金(81401032)

Transplantation of human amniotic mesenchymal stem cells promotes functional recovery in a rat model of traumatic spinal cord injury

Honglong Zhou1, Xuejun Zhang2, Maoying Zhang1, Zhongjie Yan3, Zhimin Xu1, Ruxiang Xu1()   

  1. 1. Affiliated Bayi Brain Hospital, The PLA Army General Hospital, Beijing 100700, China
    2. Department of Gynecology and Obstetrics, The PLA Army General Hospital, Beijing 100700, China
    3. Department of Neurosurgery, The Second Hospital of Hebei Medical University, ShiJiazhuang 050000, China
  • Received:2016-08-18 Published:2016-12-15
  • Corresponding author: Ruxiang Xu
引用本文:

周洪龙, 张学军, 张茂营, 闫中杰, 徐智敏, 徐如祥. 移植人羊膜间充质干细胞促进脊髓损伤大鼠神经功能恢复[J/OL]. 中华神经创伤外科电子杂志, 2016, 02(06): 355-360.

Honglong Zhou, Xuejun Zhang, Maoying Zhang, Zhongjie Yan, Zhimin Xu, Ruxiang Xu. Transplantation of human amniotic mesenchymal stem cells promotes functional recovery in a rat model of traumatic spinal cord injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2016, 02(06): 355-360.

目的

研究移植人羊膜间充质干细胞(hAMSCs)是否促进脊髓损伤大鼠神经功能恢复,探索其可能作用机制。

方法

60只雌性SD大鼠按照随机数字表法分为磷酸盐缓冲液(PBS)治疗组(30只)和hAMSCs治疗组(30只)。脊髓损伤采用脊髓撞击损伤模型,hAMSCs或PBS立刻移植到离脊髓损伤中心2 mm的头尾两端。免疫荧光检测细胞分化,血管再生和轴突再生。酶联免疫吸附剂测定试剂盒检测脑源性神经营养因子(BDNF)和血管内皮生长因子(VEGF)含量,BBB运动功能评分检测行为学。

结果

在脊髓损伤后14 d、21 d和28 d,hAMSCs治疗组BBB评分分别为(8.75±0.701)、(10.375±0.532)和(12.125±0.350),高于PBS组(6.0±0.463)、(7.25±0.412)和(9.125±0.440),差异具有统计学意义(P<0.05)。在第7天和第14天,hAMSCs治疗组BDNF表达水平分别为(75.138±4.367)pg/mg和(66.483±4.099)pg/mg,高于PBS组(43.901±3.607)pg/mg和(41.108±3.848)pg/mg,差异具有统计学意义(P<0.05)。在第7天,第14天和第28天,hAMSCs治疗组VEGF表达水平分别为(23.328±2.463)pg/mg,(22.301±2.223)pg/mg和(14.855±1.282)pg/mg,高于PBS组(9.978±1.572)pg/mg,(9.271±1.496)pg/mg和(7.113±1.123)pg/mg,差异具有统计学意义(P<0.05)。hAMSCs治疗组血管数目(17.5±2.102)高于PBS组(6.25±1.750),差异具有统计学意义(P<0.05)。hAMSCs治疗组小鼠抗5羟色胺阳性神经纤维面积(3486±203.643)和GAP43阳性神经纤维面积(4568.25±253.881)高于PBS组(2070.25±156.344)和(2455.725±314.475),差异具有统计学意义(P<0.05)。

结论

移植hAMSCs能促进脊髓损伤大鼠神经功能恢复,其作用机制可能是通过增加神经营养因子表达,促进血管再生和轴突再生。因此hAMSCs移植是治疗脊髓损伤的理想方法。

Objective

To assess whether hAMSCs transplantation promotes neurological functional recovery in rats after traumatic spinal cord injury (SCI). In addition, the potential mechanisms underlying the possible benefits of this therapy were investigated.

Methods

A total of 60 Female Sprague-Dawley rats were divided into PBS group and hAMSCs group (n=30). The SCI models were induced by a weight Drop device and then hAMSCs, or phosphate buffered saline (PBS) were immediately injected into the contused dorsal spinal cord at 2 mm rostral and 2 mm caudal to the injury site. Immunohistochemistry were performed to assay differentiation, angiogenesis and axonal regeneration. The expressions of BDNF and VEGF were analyzed by ELISA. Hind limb motor function was assessed with Basso, Beattie and Bresnahan (BBB) locomotor rating scale.

Results

At 14, 21 and 28 d after SCI, BBB scores (8.75±0.701, 10.375±0.532, 12.125±0.350) of the hAMSCs group were significantly higher than that of PBS group(6.0±0.463, 7.25±0.412, 9.125±0.440) (P<0.05). At 7 and 14 d after SCI, the levels of BDNF (75.138±4.367 pg/mg, 66.483±4.099 pg/mg) of the hAMSCs group were significantly higher than that of PBS group (43.901±3.607 pg/mg, 41.108±3.848 pg/mg) (P<0.05). At 7, 14 and 28 d after SCI, the levels of VEGF (23.328±2.463 pg/mg, 22.301±2.223 pg/mg, 14.855±1.282 pg/mg) were significantly higher than that of PBS group (9.978±1.572 pg/mg, 9.271±1.496 pg/mg, 7.113±1.123 pg/mg)(P<0.05). The number of vWF+ blood vessels 17.5±2.102 in the hAMSCs group was significantly higher than that in PBS group 6.25±1.750(P<0.05). The 5HT+ fiber area 3486±203.643 and GAP43+ fiber area 4568.25±253.881 in the hAMSCs group were significantly higher than that in PBS group (2070.25±156.344, 2455.725±314.475) (P<0.05).

Conclusion

hAMSCs transplantation significantly enhanced neurological function in rats after SCI. This enhanced neurological function may be due to increased expression of neurotrophic factors and both angiogenesis and axonal regeneration. Thus, hAMSCs transplantation appears to be promising in the treatment of SCI.

图1 在移植后28 d人羊膜间充质干细胞保持未分化状态
图2 人羊膜间充质干细胞移植促进轴突再生和血管再生
图3 hAMSCs移植提高脊髓脑源性神经营养因子和血管内皮生长因子含量和大鼠运动功能
[1]
Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury[J]. J Neurotrauma, 2006, 23(3-4): 264-280.
[2]
Bottai D, Cigognini D, Madaschi L, et al. Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice[J]. Exp Neurol, 2010, 223(2): 452-463.
[3]
McMahon SS, Albermann S, Rooney GE, et al. Engraftment, migration and differentiation of neural stem cells in the rat spinal cord following contusion injury[J]. Cytotherapy, 2010, 12(3): 313-325.
[4]
Lee KH, Suh-Kim H, Choi JS, et al. Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats[J]. Acta Neurobiol Exp(Wars), 2007, 67(1): 13-22.
[5]
Diaz-Prado S, Muinos-Lopez E, Hermida-Gomez T, et al. Human amniotic membrane as an alternative source of stem cells for regenerative medicine[J]. Differentiation, 2011, 81(3): 162-171.
[6]
Kim SW, Zhang HZ, Kim CE, et al. Amniotic mesenchymal stem cells with robust chemotactic properties are effective in the treatment of a myocardial infarction model[J]. Int J Cardiol, 2013, 168(2): 1062-1069.
[7]
Kim SW, Zhang HZ, Guo L, et al. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities[J]. PloS one, 2012, 7(7): e41105.
[8]
Zhang D, Jiang M, Miao D. Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse[J]. PloS one, 2011, 6(2): e16789.
[9]
Kim KS, Kim HS, Park JM, et al. Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model[J]. Neurobiol Aging, 2013, 34(10): 2408-2420.
[10]
Hu SL, Luo HS, Li JT, et al. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells[J]. Crit Care Medicine, 2010, 38(11): 2181-2189.
[11]
Sasaki M, Radtke C, Tan AM, et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury[J]. J Neurosci, 2009, 29(47): 14932-14941.
[12]
Kishino A, Ishige Y, Tatsuno T, et al. BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth[J]. Exp Neurol, 1997, 144(2): 273-286.
[13]
Novikova L, Novikov L, Kellerth JO. Brain-derived neurotrophic factor reduces necrotic zone and supports neuronal survival after spinal cord hemisection in adult rats[J]. Neurosci Lett, 1996, 220(3): 203-206.
[14]
Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury[J]. Exp Neurol, 2005, 191(2): 344-360.
[15]
Oudega M. Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair[J]. Cell and tissue research, 2012, 349(1): 269-288.
[16]
Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection[J]. Bioessays, 2004, 26(9): 943-954.
[17]
Sundberg LM, Herrera JJ, Narayana PA. Effect of vascular endothelial growth factor treatment in experimental traumatic spinal cord injury: in vivo longitudinal assessment[J]. J Neurotrauma, 2011, 28(4): 565-578.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[2] 中华医学会器官移植学分会. 中国肺移植气道并发症临床诊疗指南(2024版)[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 266-274.
[3] 黄莹, 李璇, 刘梦杨, 彭桂林, 徐鑫, 韦兵, 杨超. 靶向联合治疗双肺移植术后KRAS和BRAF基因双突变晚期肺腺癌一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 298-301.
[4] 邹永康, 石雍, 徐贤刚, 张帅民, 刘衍, 杨生鹏, 叶啟发, 陈根, 张毅. 肾移植术后手术切口米根霉感染伴菌血症一例并文献复习[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 289-292.
[5] 仲福顺, 余露, 范晓礼, 叶啟发. 肝移植治疗肝上皮样血管内皮瘤一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 293-297.
[6] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[7] 贺健, 张骊, 王洪海, 蒋文涛. 肝移植术后脾功能亢进转归及治疗研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 310-314.
[8] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[9] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[12] 傅斌生, 冯啸, 杨卿, 曾凯宁, 姚嘉, 唐晖, 刘剑戎, 魏绪霞, 易慧敏, 易述红, 陈规划, 杨扬. 脂肪变性供肝在成人劈离式肝移植中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 789-794.
[13] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[14] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[15] 于同, 矫健航, 姜炜博, 王中汉, 王洋, 伍旭辉, 吴敏飞. 体位复位与椎板切除减压内固定术治疗胸腰段爆裂性骨折的对比性研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 331-339.
阅读次数
全文


摘要