[1] |
Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury[J]. J Neurotrauma, 2006, 23(3-4): 264-280.
|
[2] |
Bottai D, Cigognini D, Madaschi L, et al. Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice[J]. Exp Neurol, 2010, 223(2): 452-463.
|
[3] |
McMahon SS, Albermann S, Rooney GE, et al. Engraftment, migration and differentiation of neural stem cells in the rat spinal cord following contusion injury[J]. Cytotherapy, 2010, 12(3): 313-325.
|
[4] |
Lee KH, Suh-Kim H, Choi JS, et al. Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats[J]. Acta Neurobiol Exp(Wars), 2007, 67(1): 13-22.
|
[5] |
Diaz-Prado S, Muinos-Lopez E, Hermida-Gomez T, et al. Human amniotic membrane as an alternative source of stem cells for regenerative medicine[J]. Differentiation, 2011, 81(3): 162-171.
|
[6] |
Kim SW, Zhang HZ, Kim CE, et al. Amniotic mesenchymal stem cells with robust chemotactic properties are effective in the treatment of a myocardial infarction model[J]. Int J Cardiol, 2013, 168(2): 1062-1069.
|
[7] |
Kim SW, Zhang HZ, Guo L, et al. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities[J]. PloS one, 2012, 7(7): e41105.
|
[8] |
Zhang D, Jiang M, Miao D. Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse[J]. PloS one, 2011, 6(2): e16789.
|
[9] |
Kim KS, Kim HS, Park JM, et al. Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model[J]. Neurobiol Aging, 2013, 34(10): 2408-2420.
|
[10] |
Hu SL, Luo HS, Li JT, et al. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells[J]. Crit Care Medicine, 2010, 38(11): 2181-2189.
|
[11] |
Sasaki M, Radtke C, Tan AM, et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury[J]. J Neurosci, 2009, 29(47): 14932-14941.
|
[12] |
Kishino A, Ishige Y, Tatsuno T, et al. BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth[J]. Exp Neurol, 1997, 144(2): 273-286.
|
[13] |
Novikova L, Novikov L, Kellerth JO. Brain-derived neurotrophic factor reduces necrotic zone and supports neuronal survival after spinal cord hemisection in adult rats[J]. Neurosci Lett, 1996, 220(3): 203-206.
|
[14] |
Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury[J]. Exp Neurol, 2005, 191(2): 344-360.
|
[15] |
Oudega M. Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair[J]. Cell and tissue research, 2012, 349(1): 269-288.
|
[16] |
Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection[J]. Bioessays, 2004, 26(9): 943-954.
|
[17] |
Sundberg LM, Herrera JJ, Narayana PA. Effect of vascular endothelial growth factor treatment in experimental traumatic spinal cord injury: in vivo longitudinal assessment[J]. J Neurotrauma, 2011, 28(4): 565-578.
|