切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2016, Vol. 02 ›› Issue (06) : 355 -360. doi: 10.3877/cma.j.issn.2095-9141.2016.06.008

所属专题: 文献

基础研究

移植人羊膜间充质干细胞促进脊髓损伤大鼠神经功能恢复
周洪龙1, 张学军2, 张茂营1, 闫中杰3, 徐智敏1, 徐如祥1,()   
  1. 1. 100700 北京,解放军陆军总医院附属八一脑科医院
    2. 100700 北京,解放军陆军总医院妇产科
    3. 050000 石家庄,河北医科大学第二医院神经外科
  • 收稿日期:2016-08-18 出版日期:2016-12-15
  • 通信作者: 徐如祥
  • 基金资助:
    全军医药科技"十二五"重点项目(BWS11J002); 全军医药科技"十二五"重点项目(BWS12J010); 国家自然科学基金(81401032)

Transplantation of human amniotic mesenchymal stem cells promotes functional recovery in a rat model of traumatic spinal cord injury

Honglong Zhou1, Xuejun Zhang2, Maoying Zhang1, Zhongjie Yan3, Zhimin Xu1, Ruxiang Xu1()   

  1. 1. Affiliated Bayi Brain Hospital, The PLA Army General Hospital, Beijing 100700, China
    2. Department of Gynecology and Obstetrics, The PLA Army General Hospital, Beijing 100700, China
    3. Department of Neurosurgery, The Second Hospital of Hebei Medical University, ShiJiazhuang 050000, China
  • Received:2016-08-18 Published:2016-12-15
  • Corresponding author: Ruxiang Xu
引用本文:

周洪龙, 张学军, 张茂营, 闫中杰, 徐智敏, 徐如祥. 移植人羊膜间充质干细胞促进脊髓损伤大鼠神经功能恢复[J]. 中华神经创伤外科电子杂志, 2016, 02(06): 355-360.

Honglong Zhou, Xuejun Zhang, Maoying Zhang, Zhongjie Yan, Zhimin Xu, Ruxiang Xu. Transplantation of human amniotic mesenchymal stem cells promotes functional recovery in a rat model of traumatic spinal cord injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2016, 02(06): 355-360.

目的

研究移植人羊膜间充质干细胞(hAMSCs)是否促进脊髓损伤大鼠神经功能恢复,探索其可能作用机制。

方法

60只雌性SD大鼠按照随机数字表法分为磷酸盐缓冲液(PBS)治疗组(30只)和hAMSCs治疗组(30只)。脊髓损伤采用脊髓撞击损伤模型,hAMSCs或PBS立刻移植到离脊髓损伤中心2 mm的头尾两端。免疫荧光检测细胞分化,血管再生和轴突再生。酶联免疫吸附剂测定试剂盒检测脑源性神经营养因子(BDNF)和血管内皮生长因子(VEGF)含量,BBB运动功能评分检测行为学。

结果

在脊髓损伤后14 d、21 d和28 d,hAMSCs治疗组BBB评分分别为(8.75±0.701)、(10.375±0.532)和(12.125±0.350),高于PBS组(6.0±0.463)、(7.25±0.412)和(9.125±0.440),差异具有统计学意义(P<0.05)。在第7天和第14天,hAMSCs治疗组BDNF表达水平分别为(75.138±4.367)pg/mg和(66.483±4.099)pg/mg,高于PBS组(43.901±3.607)pg/mg和(41.108±3.848)pg/mg,差异具有统计学意义(P<0.05)。在第7天,第14天和第28天,hAMSCs治疗组VEGF表达水平分别为(23.328±2.463)pg/mg,(22.301±2.223)pg/mg和(14.855±1.282)pg/mg,高于PBS组(9.978±1.572)pg/mg,(9.271±1.496)pg/mg和(7.113±1.123)pg/mg,差异具有统计学意义(P<0.05)。hAMSCs治疗组血管数目(17.5±2.102)高于PBS组(6.25±1.750),差异具有统计学意义(P<0.05)。hAMSCs治疗组小鼠抗5羟色胺阳性神经纤维面积(3486±203.643)和GAP43阳性神经纤维面积(4568.25±253.881)高于PBS组(2070.25±156.344)和(2455.725±314.475),差异具有统计学意义(P<0.05)。

结论

移植hAMSCs能促进脊髓损伤大鼠神经功能恢复,其作用机制可能是通过增加神经营养因子表达,促进血管再生和轴突再生。因此hAMSCs移植是治疗脊髓损伤的理想方法。

Objective

To assess whether hAMSCs transplantation promotes neurological functional recovery in rats after traumatic spinal cord injury (SCI). In addition, the potential mechanisms underlying the possible benefits of this therapy were investigated.

Methods

A total of 60 Female Sprague-Dawley rats were divided into PBS group and hAMSCs group (n=30). The SCI models were induced by a weight Drop device and then hAMSCs, or phosphate buffered saline (PBS) were immediately injected into the contused dorsal spinal cord at 2 mm rostral and 2 mm caudal to the injury site. Immunohistochemistry were performed to assay differentiation, angiogenesis and axonal regeneration. The expressions of BDNF and VEGF were analyzed by ELISA. Hind limb motor function was assessed with Basso, Beattie and Bresnahan (BBB) locomotor rating scale.

Results

At 14, 21 and 28 d after SCI, BBB scores (8.75±0.701, 10.375±0.532, 12.125±0.350) of the hAMSCs group were significantly higher than that of PBS group(6.0±0.463, 7.25±0.412, 9.125±0.440) (P<0.05). At 7 and 14 d after SCI, the levels of BDNF (75.138±4.367 pg/mg, 66.483±4.099 pg/mg) of the hAMSCs group were significantly higher than that of PBS group (43.901±3.607 pg/mg, 41.108±3.848 pg/mg) (P<0.05). At 7, 14 and 28 d after SCI, the levels of VEGF (23.328±2.463 pg/mg, 22.301±2.223 pg/mg, 14.855±1.282 pg/mg) were significantly higher than that of PBS group (9.978±1.572 pg/mg, 9.271±1.496 pg/mg, 7.113±1.123 pg/mg)(P<0.05). The number of vWF+ blood vessels 17.5±2.102 in the hAMSCs group was significantly higher than that in PBS group 6.25±1.750(P<0.05). The 5HT+ fiber area 3486±203.643 and GAP43+ fiber area 4568.25±253.881 in the hAMSCs group were significantly higher than that in PBS group (2070.25±156.344, 2455.725±314.475) (P<0.05).

Conclusion

hAMSCs transplantation significantly enhanced neurological function in rats after SCI. This enhanced neurological function may be due to increased expression of neurotrophic factors and both angiogenesis and axonal regeneration. Thus, hAMSCs transplantation appears to be promising in the treatment of SCI.

图1 在移植后28 d人羊膜间充质干细胞保持未分化状态
图2 人羊膜间充质干细胞移植促进轴突再生和血管再生
图3 hAMSCs移植提高脊髓脑源性神经营养因子和血管内皮生长因子含量和大鼠运动功能
[1]
Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury[J]. J Neurotrauma, 2006, 23(3-4): 264-280.
[2]
Bottai D, Cigognini D, Madaschi L, et al. Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice[J]. Exp Neurol, 2010, 223(2): 452-463.
[3]
McMahon SS, Albermann S, Rooney GE, et al. Engraftment, migration and differentiation of neural stem cells in the rat spinal cord following contusion injury[J]. Cytotherapy, 2010, 12(3): 313-325.
[4]
Lee KH, Suh-Kim H, Choi JS, et al. Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats[J]. Acta Neurobiol Exp(Wars), 2007, 67(1): 13-22.
[5]
Diaz-Prado S, Muinos-Lopez E, Hermida-Gomez T, et al. Human amniotic membrane as an alternative source of stem cells for regenerative medicine[J]. Differentiation, 2011, 81(3): 162-171.
[6]
Kim SW, Zhang HZ, Kim CE, et al. Amniotic mesenchymal stem cells with robust chemotactic properties are effective in the treatment of a myocardial infarction model[J]. Int J Cardiol, 2013, 168(2): 1062-1069.
[7]
Kim SW, Zhang HZ, Guo L, et al. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities[J]. PloS one, 2012, 7(7): e41105.
[8]
Zhang D, Jiang M, Miao D. Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse[J]. PloS one, 2011, 6(2): e16789.
[9]
Kim KS, Kim HS, Park JM, et al. Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model[J]. Neurobiol Aging, 2013, 34(10): 2408-2420.
[10]
Hu SL, Luo HS, Li JT, et al. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells[J]. Crit Care Medicine, 2010, 38(11): 2181-2189.
[11]
Sasaki M, Radtke C, Tan AM, et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury[J]. J Neurosci, 2009, 29(47): 14932-14941.
[12]
Kishino A, Ishige Y, Tatsuno T, et al. BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth[J]. Exp Neurol, 1997, 144(2): 273-286.
[13]
Novikova L, Novikov L, Kellerth JO. Brain-derived neurotrophic factor reduces necrotic zone and supports neuronal survival after spinal cord hemisection in adult rats[J]. Neurosci Lett, 1996, 220(3): 203-206.
[14]
Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury[J]. Exp Neurol, 2005, 191(2): 344-360.
[15]
Oudega M. Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair[J]. Cell and tissue research, 2012, 349(1): 269-288.
[16]
Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection[J]. Bioessays, 2004, 26(9): 943-954.
[17]
Sundberg LM, Herrera JJ, Narayana PA. Effect of vascular endothelial growth factor treatment in experimental traumatic spinal cord injury: in vivo longitudinal assessment[J]. J Neurotrauma, 2011, 28(4): 565-578.
[1] 谢迎东, 孙帼, 徐超丽, 杨斌, 孙晖, 戴云. 超声造影定量评价不同生存期移植肾血流灌注的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 749-754.
[2] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[3] 刘林峰, 王增涛, 王云鹏, 钟硕, 郝丽文, 仇申强, 陈超. 足底内侧皮瓣联合甲骨皮瓣在手指V度缺损再造中的临床应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 480-484.
[4] 陈永沛, 仲海燕, 陈勇, 王慜, 王倩, 邹鸣立, 袁斯明. 数字减影血管造影在腓动脉穿支皮瓣移植中的应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 507-510.
[5] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[6] 刘竹影, 周年苟, 李泳祺, 周丽斌. 空心环钻联合手术导板用于自体牙移植牙槽窝备洞[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 418-423.
[7] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[8] 彭文翰. 肾移植受者早期霉酚酸强化剂量长期有效性和安全性的研究[J]. 中华移植杂志(电子版), 2023, 17(05): 0-.
[9] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[10] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[11] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[12] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[13] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[14] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[15] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
阅读次数
全文


摘要