切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2015, Vol. 01 ›› Issue (04) : 219 -226. doi: 10.3877/cma.j.issn.2095-9141.2015.04.008

基础研究

不同穿刺点行子宫内电转对小鼠胚胎皮层发育的影响
张鹏1, 吴翠莹1, 陶庆霞1, 牛力军1, 陈文锦1, 刘宁1, 徐如祥1,()   
  1. 1.北京军区总医院附属八一脑科医院
  • 收稿日期:2015-06-09 出版日期:2015-08-15
  • 通信作者: 徐如祥
  • 基金资助:
    国家自然科学基金青年项目(项目编号:81401031)

Influence of three puncture sites of in utero electroporation on embryonic cortex development

Peng Zhang1, Cuiying Wu1, Qingxia Tao1, Lijun Niu1, Wenjin Chen1, Ning Liu1, Ruxiang Xu1,()   

  1. 1.Affiliated Bayi Brain Hospital,The Military General Hospital of Beijing PLA,Beijing 100700,China
  • Received:2015-06-09 Published:2015-08-15
  • Corresponding author: Ruxiang Xu
引用本文:

张鹏, 吴翠莹, 陶庆霞, 牛力军, 陈文锦, 刘宁, 徐如祥. 不同穿刺点行子宫内电转对小鼠胚胎皮层发育的影响[J]. 中华神经创伤外科电子杂志, 2015, 01(04): 219-226.

Peng Zhang, Cuiying Wu, Qingxia Tao, Lijun Niu, Wenjin Chen, Ning Liu, Ruxiang Xu. Influence of three puncture sites of in utero electroporation on embryonic cortex development[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2015, 01(04): 219-226.

目的

探讨子宫内电转技术操作过程中三种不同的穿刺点对胚胎死亡率、皮层厚度和皮层面积,以及细胞分化、增殖、迁移和细胞凋亡的影响。

方法

通过应用免疫荧光染色对Tbr1,Tbr2,Pax6,Ctip2,Caspase-3和Ki67等标记物的检测分析,评价三种不同穿刺点对细胞分化、增殖、迁移和细胞凋亡的影响。应用SPSS13.0软件使用单因素方差分析的方法对分化、增殖和凋亡实验中的细胞数量进行统计分析。

结果

三种不同的穿刺点无论对胚胎死亡率、皮层厚度和皮层面积,还是细胞分化、增殖、迁移和细胞凋亡的影响均无统计学意义(P>0.05)。

结论

三种不同的穿刺点对宫内电转胚胎无显著性影响。

Objective

To compare the influence of three different puncture sites of in utero electroporation on the death rate of mice embryos,the thickness and the area of cortex,cell differentiation,cell proliferation,cell migration and cell apoptosis.

Methods

It groups on the bases of common puncture sites as follows:1.electric shock only(control);2.injection near the posterior fontanel,at about one millimeter(here,group A);3.injection along the antero-posterior axis into the cephalic ventricle(group B);and 4.injection near the midpoint between the anterior fontanel and posterior fontanel,at about three millimeters(group C).We compared the four groups using littermate mice,and repeated the experiment with 5 pregnant mice.To detect whether different injection positions affect cell differentiation,cell proliferation,cell migration and cell apoptosis,we stained cells with anti-Tbr1,anti-Tbr2,anti-Pax6 anti-Ctip2,anti-Caspase-3 and anti-Ki67.In differentiation,proliferation,and apoptosis assays,the cell number was analyzed with SPSS 13.0 software,using one way ANOVA.

Results

We found no statistical significant differences between the three puncture methods in the death rate of embryos,the thickness and the area of cortex,cell differentiation,cell proliferation,cell migration and cell apoptosis(P>0.05).

Conclusion

Three puncture sites used for in utero electroporation show no significantly different negative impacts during gene transfer into the embryonic mousebrain.

表1 不同尖端对胚胎存活率及GFP阳性率的影响
图1 玻璃微量注射针的准备与子宫内电转不同方法穿刺后效果展示 A:子宫内电转技术中微量注射管的准备。a’:微量注射管尖端过粗。b’:微量注射管无尖。c’:微量注射管尖端无角度。d’:理想的微量注射管的尖端应符合以下要求:直径介于40~60µm之间,尖端角度为15-30°。图中标尺为50µm。B:子宫内电转的模式图。将DNA质粒注入脑室后,被电击进入毗邻的神经细胞,并向阳极电极板方向移动。阳性电极板位置如果所示。C、D:为不同穿刺位置的模式图(C)和真实的实验图片(D)。黄色箭头所指为后囟位置。E:不同穿刺点电转后GFP荧光蛋白的表达情况。显示不同穿刺点后荧光蛋白表达情况无差异。图中标尺为500µm。
图2 不同穿刺点对皮层厚度与皮层体积的影响 A:不同穿刺点对皮层厚度的影响。白色箭头所示为皮层厚度。B:与对照组相比,三种不同穿刺点对皮层厚度的影响无统计学意义(n=5鼠脑,采用单因素方差分析的统计方法,P>0.05)。标尺为100µm。C:不同穿刺点对皮层体积的影响。白线所描记的是整个皮层的区域。D:与对照组相比,三种不同穿刺点对皮层体积的影响无统计学意义(n=5鼠脑,采用单因素方差分析的统计方法,P>0.05)。标尺为100µm。
图3 不同穿刺点对细胞分化的影响 A:电转后脑片做Ctip2,Tbr1,Tbr2和Pax6的免疫荧光染色。电转阳性细胞标记为绿色,Ctip2,Tbr1,Tbr2和Pax6为红色。标尺为50µm。B:柱状图表示皮层中所有DAPI阳性细胞中各标记物阳性细胞所占的比例。误差线代表标准误。(n=4鼠脑,采用单因素方差分析的方法统计各组比例。Ctip2,P>0.05;Tbr1,P>0.05;Tbr2,P>0.05;Pax-6,P>0.05。)
表2 不同穿刺点胚胎存活率及GFP阳性胚胎的比例
图4 不同穿刺点对细胞增殖、迁移和凋亡的影响 A:对电转后脑片进行免疫荧光染色,红色为Ki67。B:柱状图代表与对照组相比,三种不同穿刺点之间无统计学差异。标尺为100µm。误差线代表标准误(n=4鼠脑,采用单因素方差分析的统计方法进行统计,P>0.05)。C.对A图中电转阳性细胞中Ki67阳性细胞所占比例的定量分析。对照组,n=3鼠脑,1 240细胞;A组,n=3鼠脑,1 150细胞;B组,n=3鼠脑,1 050细胞;C组,n=3鼠脑,1 170细胞(CP区:P>0.05;IZ区:P>0.05;SVZ/VZ区:P>0.05)。D.电转24 h后检测caspase-3的免疫荧光染色。白色箭头所指为caspase-3阳性细胞。E.对D图免疫荧光染色的定量分析,三种不同穿刺点之间并无统计学差异。caspase-3阳性细胞,绿色;DsRed报告基因阳性细胞,红色(n=4鼠脑,采用oneway ANOVA的统计方法进行统计,P>0.05)。标尺为50µm。误差线代表标准误。
[1]
Venken KJ,Bellen HJ.Transgenesis upgrades for Drosophila melanogaster[J].Development,2007,134(20):3571-3584.
[2]
Langevin L M,Mattar P,Scardigli R,et al.Validating in utero electroporation for the rapid analysis of gene regulatory elements in the murine telencephalon[J].Dev Dyn,2007,236(5):1273-1286.
[3]
Yang N S,Sun W H.Gene gun and other non-viral approaches for cancer genetherapy[J].Nat Med,1995,1(5):481-483.
[4]
Shukla V K,Doyon Y,Miller JC,et al.Precisegenome modification in the crop species Zea mays using zinc-finger nucleases[J].Nature,2009,459(7245):437-441.
[5]
Tabata H,Nakajima K.Efficient in utero gene transfer system to the developing mouse brain using electroporation:visualization of neuronal migration in the developing cortex[J].Neuroscience,2001,103(4):865-872.
[6]
Fukuchi-Shimogori T,Grove EA.Neocortex patterning by the secreted signaling molecule FGF8[J].Science,2001,294(5544):1071-1074.
[7]
Saito T,Nakatsuji N.Efficient genetransfer into theembryonic mouse brain using in vivo electroporation[J].Dev Biol,2001,240(1):237-246.
[8]
Kawasaki H,Toda T,Tanno K.In vivo genetic manipulation of cortical progenitors in gyrencephalic carnivores using in utero electroporation[J].Biol Open,2013,2(1):95-100.
[9]
Kita Y,Kawakami K,Takahashi Y,et al.Development of cerebellar neurons and glias revealed by in utero electroporation:Golgi-like labeling of cerebellar neurons and glias[J].PLoS One,2013,8(7):e70091.
[10]
Taniguchi Y,Young-Pearse T,Sawa A,et al.In utero electroporation as a tool for genetic manipulation in vivo to study psychiatric disorders:from genes to circuits and behaviors[J].Neuroscientist,2012,18(2):169-179.
[11]
Gal JS,Morozov Y M,Ayoub A E,et al.Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones[J].J Neurosci,2006,26(3):1045-1056.
[12]
Rash B G,Lim H D,Breunig JJ,et al.FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis[J].JNeurosci,2011,31(43):15604-15617
[13]
Takahashi T,Nowakowski R S,Caviness V J.The leaving or Q fraction of themurinecerebral proliferative epithelium:ageneral model of neocortical neuronogenesis[J].J Neurosci,1996,16(19):6183-6196.
[14]
Noctor SC,Martinez-Cerdeno V,Ivic L,et al.Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases[J].Nat Neurosci,2004,7(2):136-144.
[15]
Haubensak W,Attardo A,Denk W,et al.Neurons arise in the basal neuroepithelium of the early mammalian telencephalon:a major site of neurogenesis[J].Proc Natl Acad Sci U SA,2004,101(9):3196-3201.
[16]
Englund C,Fink A,Lau C,et al.Pax6,Tbr2,and Tbr1 are expressed sequentially by radial glia,intermediate progenitor cells,and postmitotic neurons in developing neocortex[J].J Neurosci,2005,25(1):247-251.
[17]
Kee N,Teixeira C M,Wang A H,et al.Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus[J].Nat Neurosci,2007,10(3):355-362.
[18]
Yeh M L,Gonda Y,Mommersteeg M T,et al.Robo1 modulates proliferation and neurogenesis in the developing neocortex[J].J Neurosci,2014,34(16):5717-5731.
[19]
Furukawa T,Yamada J,Akita T,et al.Roles of taurine-mediated tonic GABAA receptor activation in theradial migration of neurons in the fetal mouse cerebral cortex[J].Front Cell Neurosci,2014,8:88.
[20]
Chi Z,Zhang J,Tokunaga A,et al.Botch promotes neurogenesis by antagonizing Notch[J].Dev Cell,2012,22(4):707-720.
[21]
Bulfone A,Martinez S,Marigo V,et al.Expression pattern of the Tbr2(Eomesodermin)gene during mouse and chick brain development[J].Mech Dev,1999,84(1-2):133-138.
[22]
Bulfone A,Smiga S M,Shimamura K,et al.T-brain-1:a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex[J].Neuron,1995,15(1):63-78.
[23]
Hevner R F,Shi L,Justice N,et al.Tbr1 regulates differentiation of the preplate and layer 6[J].Neuron,2001,29(2):353-366.
[24]
Chen B,Schaevitz L R,Mcconnell S K.Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex[J].Proc Natl Acad Sci U SA,2005,102(47):17184-17189.
[25]
Lian G,Lu J,Hu J,et al.Filamin a regulates neural progenitor proliferation and cortical size through Wee1-dependent Cdk1 phosphorylation[J].JNeurosci,2012,32(22):7672-7684.
[26]
Angevine J J,Sidman R L.Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse[J].Nature,1961,192:766-768.
[27]
Berry M,Rogers A W.The migration of neuroblasts in the developing cerebral cortex[J].JAnat,1965,99(Pt 4):691-709.
[1] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[2] 何羽. 腔镜微创手术治疗分化型甲状腺癌的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 456-458.
[3] 司钦亮, 毕世龙, 焦慧骁, 李世照, 陈哲禹, 武玉东. 精索去分化脂肪肉瘤两例并文献复习[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 585-590.
[4] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[5] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[6] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[7] 杨攀, 黄晓寒, 邓才霞, 周利航, 周向东, 罗虎. SMARCA4缺失的胸部未分化肿瘤临床特征及预后分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 529-534.
[8] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[9] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 李晶, 潘侠, 周芳, 汪晶, 洪佳. 普鲁卡因通过上调lncRNA DGCR5抑制胃癌细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 151-158.
[12] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[13] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[14] 杨菲, 刘腾飞, 赵志军, 李睿聪, 张颉, 刘妍, 赵珍. 血清维生素水平与分化型甲状腺癌的关联性研究[J]. 中华临床医师杂志(电子版), 2024, 18(07): 633-640.
[15] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
阅读次数
全文


摘要