切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2015, Vol. 01 ›› Issue (03) : 178 -182. doi: 10.3877/cma.j.issn.2095-9141.2015.03.013

专题笔谈

脊髓室管膜细胞再生修复的潜力和其他相关细胞靶向治疗策略
魏子淳1, 王宇1, 徐熙萌1, 吴畏1, 饶晨旭1, 谭会兵1,()   
  1. 1.121001 锦州,辽宁医学院解剖学教研室
  • 收稿日期:2015-04-08 出版日期:2015-06-15
  • 通信作者: 谭会兵
  • 基金资助:
    辽宁医学院人才引进项目(YY017)国家自然科学金(81471286)辽宁省大学生创新课题(201410160007)辽宁医学院教改课题(YA2014004)资助

Potential of spinal cord ependymal cells reproduction and other related cell targeted therapeutic strategies

Zichun Wei1, Yu Wang1, Ximeng Xu1, Wei Wu1, Chenxu Rao1, Huibing Tan,1()   

  1. 1.Department of Anatomy,Liaoning Medical College,Jinzhou 121001,China
  • Received:2015-04-08 Published:2015-06-15
  • Corresponding author: Huibing Tan
引用本文:

魏子淳, 王宇, 徐熙萌, 吴畏, 饶晨旭, 谭会兵. 脊髓室管膜细胞再生修复的潜力和其他相关细胞靶向治疗策略[J]. 中华神经创伤外科电子杂志, 2015, 01(03): 178-182.

Zichun Wei, Yu Wang, Ximeng Xu, Wei Wu, Chenxu Rao, Huibing Tan. Potential of spinal cord ependymal cells reproduction and other related cell targeted therapeutic strategies[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2015, 01(03): 178-182.

中枢神经系统中,脊髓中央管室管膜细胞(EC)具有一定的再生修复能力,是特化的不仅限于功能形态学的活性单位,后者作为特定的术语,它的意义超出生理学和解剖学定义。在损伤条件下,EC即可增殖分化为星形胶质细胞、少突胶质细胞和神经元。目前,复合生长因子和纤维蛋白支架的干细胞实验性治疗研究还存在长期疗效的争议。在中枢神经系统原位,使非神经元直接转化为功能性神经元研究方法,为脊髓损伤和疾病提供了新的治疗策略。在设计细胞治疗,如何控制EC增殖和分化或其他非神经元转化为神经元,继而形成和维持稳定有效的新生神经元功能,直至脊髓功能恢复仍然需要继续深入研究。我们需要一个全新的细胞组织概念,将神经干细胞栖地应用于中枢神经损伤等疾病的治疗和修复研究中,建立非传统的细胞分化和成熟的生物医疗微生态即环境再造治疗策略。

In the central nervous system,the ependymal cells(EC)in central canal of the spinal cord remain the persistence of a pool of stem and progenitor cells. Terminology of the EC niche as an entity of action not only showed neural stem cell potential but functioned beyond physiological and anatomical manners. The spinal cord EC generated astrocytes, oligodendrocytes and neurons in vitro and in vivo in injured spinal cord.However,it was still a challenge that the long term survival of spinal cord injury(SCI)treated by the stem cells transplanted in a fibrin matrix with a growth factor cocktail.Recently,the non-neuronal cells were directly converted into functional neurons in vivo,which opened up a new cellular therapy. With ultimate design of the therapeutics, we still need further to investigate how to manipulation of the proliferation and differentiation of EC or reprogramming of non-neuronal components into neuronal compartments,and constitute and functionally sustain the transplantation of stem cells and cellular modification in vivo until functional recovery in following SCI. We should figure out a new concept other than the traditional cell and tissue, stem cell niche, which could be non-traditionally mimicked in our human bodies to treatment of SCI under biomedical micro-ecology.

图1 脊髓中央管示意图(参照Hugnot[14]文献重新绘制) 注:ependymocyte:室管膜细胞;blood vessel:血管;tanycyte:伸长细胞;CSF containing neuron:含脑脊液神经元;GFAP+cell :神经胶质纤维酸性蛋白+细胞;Olig2+cell:少突胶质细胞转录因子-2+细胞;supra ependymal neuron:室管膜上神经元;NeuN+cell :抗神经元核抗体+细胞;Nervous Fibres:神经纤维;Unidentifide cell:不可识别细胞;Reissner's Fibre:赖斯纳氏纤维;Doublet cell:双体细胞
[1]
Lipson AC, Horner PJ. Potent possibilities: endogenous stem cells in the adult spinal cord[J]. Progress in brain research,2002,137(2):283-297.
[2]
廖法学,张辉,尹宗生.脊髓神经干细胞Niche的研究进展[J].中国组织工程研究,2012,16(19):3588-3592.
[3]
Scadden DT.The stem-cell niche as an entity of action[J].Nature,2006,441(7097):1075-1079.
[4]
Boutin C, Labedan P, Dimidschstein J, et al. A dual role for planar cell polarity genes in ciliated cells[J].Proc Natl Acad Sci U S A,2014,111(30):E3129-E3138.
[5]
Kohno K. Electron microscopic studies on Reissner's fiber and the ependymal cells in the spinal cord of the rat[J].Z Zellforsch Mikrosk Anat,1969,94(4):565-573.
[6]
Alfaro-Cervello C, Cebrian-Silla A, Soriano-Navarro M, et al.The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human[J]. J Comp Neurol,2014,522(8):1800-1817.
[7]
Mirzadeh Z, Han YG, Soriano-Navarro M, et al. Cilia organize ependymal planar polarity[J]. J Neurosci, 2010, 30(7):2600-2610.
[8]
Lee L. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia[J].J Neurosci Res,2013,91(9):1117-1132.Review.
[9]
Ohata S, Nakatani J, Herranz- Perez V, et al. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus[J].Neuron,2014,83(3):558-571.
[10]
Alfaro-Cervello C, Soriano-Navarro M, Mirzadeh Z, et al.Biciliated ependymal cell proliferation contributes to spinal cord growth[J].J Comp Neurol,2012,520(15):3528-3552.
[11]
Nualart F, Hein S. Biosynthesis and molecular biology of the secretory proteins of the subcommissural organ[J].Microsc Res Tech,2001,52(5):468-483.Review.
[12]
Barreiro- Iglesias A, Villar- Cervino V, Anadon R, et al. A monoclonal antibody as a tool to study the subcommissural organ and Reissner's fibre of the sea lamprey: an immunofluorescence study before and after a spinal cord transection[J].Neurosci Lett,2009,464(1):34-38.
[13]
Hamilton LK, Truong MK, Bednarczyk MR, et al. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord[J].Neuroscience,2009,164(3):1044-1056.
[14]
Hugnot JP, Franzen R. The spinal cord ependymal region: a stem cell niche in the caudal central nervous system[J]. Front Biosci(Landmark Ed),2011,16:1044-1059.Review.
[15]
Mladinic M, Bianchetti E, Dekanic A, et al. ATF3 is a novel nuclear marker for migrating ependymal stem cells in the rat spinal cord[J].Stem Cell Res,2014,12(3):815-827.
[16]
Mukouyama YS, Deneen B, Lukaszewicz A, et al. Olig2+neuroepithelial motoneuron progenitors are not multipotent stem cells in vivo[J]. Proc Natl Acad Sci U S A, 2006, 103(5):1551-1556.
[17]
Cawsey T, Duflou J, Shannon-Weikert C, et al. Nestin positive ependymal cells are increased in the human spinal cord after traumatic CNS injury[J]. J Neurotrauma, 2015, [Epub ahead of print] PubMed PMID:25599268.
[18]
Garcia-Ovejero D,Arevalo-Martin A, Paniagua-Torija B, et al.A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord[J]. J Comp Neurol,2013,521(1):233-251.
[19]
Lacroix S, Hamilton LK, Vaugeois A, et al. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions[J]. PLoS One,2014,9(1):e85916.
[20]
Dromard C,Guillon H,Rigau V,et al.Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitro[J].J Neurosci Res,2008,86(9):1916-1926.
[21]
Xu R, Wu C, Tao Y, et al. Nestin-positive cells in the spinal cord: a potential source of neural stem cells[J]. Int J Dev Neurosci,2008,26(7):813-820.
[22]
Schuster A, Grundmann D, Nguyen TD, et al. Bacterial Lipopolysaccharide Promotes Proliferation of Neural Stem Cells From Both Enteric and Central Nervous System[J].Gastroenterology,2011,140(5):Suppl 1,S320-S332.
[23]
宋启春,党晓谦,姬乐,et al.半乳凝素-1对脊髓损伤大鼠室管膜区细胞增殖的影响[J]. 中国脊柱脊髓杂志, 2013, 23(8):734-739.
[24]
Moore SA,Oglesbee MJ.Spinal Cord Ependymal Responses to Naturally Occurring Traumatic Spinal Cord Injury in Dogs[J].Vet Pathol, 2014, [Epub ahead of print] PubMed PMID:25445323.
[25]
Mothe AJ, Tator CH. Proliferation, migration, and differentiationofendogenousependymalregion stem/progenitor cells following minimal spinal cord injury in the adult rat[J].Neuroscience,2005,131(1):177-187.
[26]
Takahashi M, Arai Y, Kurosawa H, et al. Ependymal cell reactions in spinal cord segments after compression injury in adult rat[J].JNeuropathol Exp Neurol,2003,62(2):185-194.
[27]
Attar A, Kaptanoglu E, Aydin Z, et al. Electron microscopic study of the progeny of ependymal stem cells in the normal and injured spinal cord[J].Surg Neurol,2005,64 Suppl 2:S28-S32.
[28]
Lukovic D, Stojkovic M, Moreno-Manzano V, et al. Concise review: reactive astrocytes and stem cells in spinal cord injury:good guys or bad guys?[J]. Stem Cells, 2015, 33(4):1036-1041.
[29]
胡博,尹宗生.内源性神经干细胞治疗脊髓损伤的研究进展[J].安徽医科大学学报,2011,46(1):83-86.
[30]
Park SI, Lim JY, Jeong CH, et al. Human umbilical cord blood- derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis[J].J Biomed Biotechnol,2012,2012:362473.
[31]
Lu P, Wang Y, Graham L, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury[J].Cell,2012,150(6):1264-1273.
[32]
Sakakibara A, Aoki E, Hashizume Y, et al. Distribution of nestin and other stem cell-related molecules in developing and diseased human spinal cord[J]. Pathol Int, 2007, 57(6):358-368.
[33]
Kojima A, Tator CH. Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo[J]. J Neuropathol Exp Neurol,2000,59(8):687-697.
[34]
Weiss S,Dunne C,Hewson J,et al.Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis[J].J Neurosci,1996,16(23):7599-7609.
[35]
Muratori L, Ronchi G, Raimondo S, et al. Generation of new neurons in dorsal root Ganglia in adult rats after peripheral nerve crush injury[J].Neural Plast,2015,2015:860546.
[36]
Kawabuchi M, Tan H, Wang S. Age affects reciprocal cellular interactions in neuromuscular synapses following peripheral nerve injury[J].Ageing Res Rev,2011,10(1):43-53.
[37]
Wang S, Kawabuchi M, Zhou CJ, et al. The spatiotemporal characterization of endplate reoccupation, with special reference to the superposition patterns of the presynaptic elements and the postsynaptic receptor regions during muscle reinnervation[J].J Peripher Nerv Syst,2004,9(3):144-157.
[38]
Sharp KG, Yee KM, Steward O. A re- assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury[J].Exp Neurol,2014,257:186-204.
[39]
Foret A, Quertainmont R, Botman O, et al. Stem cells in the adult rat spinal cord: plasticity after injury and treadmill training exercise[J].J Neurochem,2010,112(3):762-772.
[40]
Krityakiarana W, Espinosa- Jeffrey A, Ghiani CA, et al.Voluntary exercise increases oligodendrogenesis in spinal cord[J].Int J Neurosci,2010,20(4):280-290.
[41]
Lee-Kubli CA, Lu P. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury[J]. Neural Regen Res,2015,10(1):10-16.Review.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[3] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[4] 石海波, 赵旭东, 王聪, 曲巍. 气肿性肾盂肾炎、气肿性膀胱炎并脓毒性休克一例报道并文献复习[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 644-647.
[5] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[6] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[7] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[8] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[9] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[10] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[11] 王秋生. 胆道良性疾病诊疗策略[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[12] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 张平骥, 徐钰, 李天水, 庞文翼, 符师宁, 张梦圆. 重症患者镇静治疗现状及期望的调查研究[J]. 中华临床医师杂志(电子版), 2024, 18(06): 562-567.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要