[1] |
Lipson AC, Horner PJ. Potent possibilities: endogenous stem cells in the adult spinal cord[J]. Progress in brain research,2002,137(2):283-297.
|
[2] |
廖法学,张辉,尹宗生.脊髓神经干细胞Niche的研究进展[J].中国组织工程研究,2012,16(19):3588-3592.
|
[3] |
Scadden DT.The stem-cell niche as an entity of action[J].Nature,2006,441(7097):1075-1079.
|
[4] |
Boutin C, Labedan P, Dimidschstein J, et al. A dual role for planar cell polarity genes in ciliated cells[J].Proc Natl Acad Sci U S A,2014,111(30):E3129-E3138.
|
[5] |
Kohno K. Electron microscopic studies on Reissner's fiber and the ependymal cells in the spinal cord of the rat[J].Z Zellforsch Mikrosk Anat,1969,94(4):565-573.
|
[6] |
Alfaro-Cervello C, Cebrian-Silla A, Soriano-Navarro M, et al.The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human[J]. J Comp Neurol,2014,522(8):1800-1817.
|
[7] |
Mirzadeh Z, Han YG, Soriano-Navarro M, et al. Cilia organize ependymal planar polarity[J]. J Neurosci, 2010, 30(7):2600-2610.
|
[8] |
Lee L. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia[J].J Neurosci Res,2013,91(9):1117-1132.Review.
|
[9] |
Ohata S, Nakatani J, Herranz- Perez V, et al. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus[J].Neuron,2014,83(3):558-571.
|
[10] |
Alfaro-Cervello C, Soriano-Navarro M, Mirzadeh Z, et al.Biciliated ependymal cell proliferation contributes to spinal cord growth[J].J Comp Neurol,2012,520(15):3528-3552.
|
[11] |
Nualart F, Hein S. Biosynthesis and molecular biology of the secretory proteins of the subcommissural organ[J].Microsc Res Tech,2001,52(5):468-483.Review.
|
[12] |
Barreiro- Iglesias A, Villar- Cervino V, Anadon R, et al. A monoclonal antibody as a tool to study the subcommissural organ and Reissner's fibre of the sea lamprey: an immunofluorescence study before and after a spinal cord transection[J].Neurosci Lett,2009,464(1):34-38.
|
[13] |
Hamilton LK, Truong MK, Bednarczyk MR, et al. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord[J].Neuroscience,2009,164(3):1044-1056.
|
[14] |
Hugnot JP, Franzen R. The spinal cord ependymal region: a stem cell niche in the caudal central nervous system[J]. Front Biosci(Landmark Ed),2011,16:1044-1059.Review.
|
[15] |
Mladinic M, Bianchetti E, Dekanic A, et al. ATF3 is a novel nuclear marker for migrating ependymal stem cells in the rat spinal cord[J].Stem Cell Res,2014,12(3):815-827.
|
[16] |
Mukouyama YS, Deneen B, Lukaszewicz A, et al. Olig2+neuroepithelial motoneuron progenitors are not multipotent stem cells in vivo[J]. Proc Natl Acad Sci U S A, 2006, 103(5):1551-1556.
|
[17] |
Cawsey T, Duflou J, Shannon-Weikert C, et al. Nestin positive ependymal cells are increased in the human spinal cord after traumatic CNS injury[J]. J Neurotrauma, 2015, [Epub ahead of print] PubMed PMID:25599268.
|
[18] |
Garcia-Ovejero D,Arevalo-Martin A, Paniagua-Torija B, et al.A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord[J]. J Comp Neurol,2013,521(1):233-251.
|
[19] |
Lacroix S, Hamilton LK, Vaugeois A, et al. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions[J]. PLoS One,2014,9(1):e85916.
|
[20] |
Dromard C,Guillon H,Rigau V,et al.Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitro[J].J Neurosci Res,2008,86(9):1916-1926.
|
[21] |
Xu R, Wu C, Tao Y, et al. Nestin-positive cells in the spinal cord: a potential source of neural stem cells[J]. Int J Dev Neurosci,2008,26(7):813-820.
|
[22] |
Schuster A, Grundmann D, Nguyen TD, et al. Bacterial Lipopolysaccharide Promotes Proliferation of Neural Stem Cells From Both Enteric and Central Nervous System[J].Gastroenterology,2011,140(5):Suppl 1,S320-S332.
|
[23] |
宋启春,党晓谦,姬乐,et al.半乳凝素-1对脊髓损伤大鼠室管膜区细胞增殖的影响[J]. 中国脊柱脊髓杂志, 2013, 23(8):734-739.
|
[24] |
Moore SA,Oglesbee MJ.Spinal Cord Ependymal Responses to Naturally Occurring Traumatic Spinal Cord Injury in Dogs[J].Vet Pathol, 2014, [Epub ahead of print] PubMed PMID:25445323.
|
[25] |
Mothe AJ, Tator CH. Proliferation, migration, and differentiationofendogenousependymalregion stem/progenitor cells following minimal spinal cord injury in the adult rat[J].Neuroscience,2005,131(1):177-187.
|
[26] |
Takahashi M, Arai Y, Kurosawa H, et al. Ependymal cell reactions in spinal cord segments after compression injury in adult rat[J].JNeuropathol Exp Neurol,2003,62(2):185-194.
|
[27] |
Attar A, Kaptanoglu E, Aydin Z, et al. Electron microscopic study of the progeny of ependymal stem cells in the normal and injured spinal cord[J].Surg Neurol,2005,64 Suppl 2:S28-S32.
|
[28] |
Lukovic D, Stojkovic M, Moreno-Manzano V, et al. Concise review: reactive astrocytes and stem cells in spinal cord injury:good guys or bad guys?[J]. Stem Cells, 2015, 33(4):1036-1041.
|
[29] |
胡博,尹宗生.内源性神经干细胞治疗脊髓损伤的研究进展[J].安徽医科大学学报,2011,46(1):83-86.
|
[30] |
Park SI, Lim JY, Jeong CH, et al. Human umbilical cord blood- derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis[J].J Biomed Biotechnol,2012,2012:362473.
|
[31] |
Lu P, Wang Y, Graham L, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury[J].Cell,2012,150(6):1264-1273.
|
[32] |
Sakakibara A, Aoki E, Hashizume Y, et al. Distribution of nestin and other stem cell-related molecules in developing and diseased human spinal cord[J]. Pathol Int, 2007, 57(6):358-368.
|
[33] |
Kojima A, Tator CH. Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo[J]. J Neuropathol Exp Neurol,2000,59(8):687-697.
|
[34] |
Weiss S,Dunne C,Hewson J,et al.Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis[J].J Neurosci,1996,16(23):7599-7609.
|
[35] |
Muratori L, Ronchi G, Raimondo S, et al. Generation of new neurons in dorsal root Ganglia in adult rats after peripheral nerve crush injury[J].Neural Plast,2015,2015:860546.
|
[36] |
Kawabuchi M, Tan H, Wang S. Age affects reciprocal cellular interactions in neuromuscular synapses following peripheral nerve injury[J].Ageing Res Rev,2011,10(1):43-53.
|
[37] |
Wang S, Kawabuchi M, Zhou CJ, et al. The spatiotemporal characterization of endplate reoccupation, with special reference to the superposition patterns of the presynaptic elements and the postsynaptic receptor regions during muscle reinnervation[J].J Peripher Nerv Syst,2004,9(3):144-157.
|
[38] |
Sharp KG, Yee KM, Steward O. A re- assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury[J].Exp Neurol,2014,257:186-204.
|
[39] |
Foret A, Quertainmont R, Botman O, et al. Stem cells in the adult rat spinal cord: plasticity after injury and treadmill training exercise[J].J Neurochem,2010,112(3):762-772.
|
[40] |
Krityakiarana W, Espinosa- Jeffrey A, Ghiani CA, et al.Voluntary exercise increases oligodendrogenesis in spinal cord[J].Int J Neurosci,2010,20(4):280-290.
|
[41] |
Lee-Kubli CA, Lu P. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury[J]. Neural Regen Res,2015,10(1):10-16.Review.
|