切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2020, Vol. 06 ›› Issue (05) : 312 -316. doi: 10.3877/cma.j.issn.2095-9141.2020.05.013

所属专题: 文献

综述

多模态影像学技术在脊髓损伤诊疗中的应用
张鑫1, 谢佳芯2, 封亚平2,()   
  1. 1. 650032 昆明,昆明医科大学研究生院
    2. 650032 昆明,联勤保障部队第九二〇医院神经外科
  • 收稿日期:2020-08-21 出版日期:2020-10-15
  • 通信作者: 封亚平

Application of multimodality imaging in the diagnosis and treatment of spinal cord injury

Xin Zhang1, Jiaxin Xie2, Yaping Feng2,()   

  1. 1. Graduate School, Kunming Medical University, Kunming 650032, China
    2. Department of Neurosurgery, 920 Hospital of Joint Logistics Support Force, Kunming 650032, China
  • Received:2020-08-21 Published:2020-10-15
  • Corresponding author: Yaping Feng
  • About author:
    Corresponding author: Feng Yaping, Email:
引用本文:

张鑫, 谢佳芯, 封亚平. 多模态影像学技术在脊髓损伤诊疗中的应用[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 312-316.

Xin Zhang, Jiaxin Xie, Yaping Feng. Application of multimodality imaging in the diagnosis and treatment of spinal cord injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2020, 06(05): 312-316.

目前脊髓损伤(SCI)评价和治疗效果验证主要依靠临床的主观判断以及传统的影像学检查方法。近年来,随着多模态影像学技术的发展,临床医生在SCI的诊治过程中可以从不同的角度进行更为详尽的影像学检查。本文就近年来国内外关于多模态影像学技术在SCI领域应用的研究进展作一综述。

At present, the evaluation of spinal cord injury and the verification of therapeutic effect in clinical work mainly rely on clinical subjective evaluation and traditional imaging methods. In recent years, with the development of multimodality imaging technology, clinicians can conduct more detailed imaging examination on the diagnosis and treatment of spinal cord injury from different angles. This paper reviews the research progress in the application of multimodality imaging in the field of spinal cord injury at home and abroad in recent years.

[1]
Talbott JF, Huie JR, Ferguson AR, et al. MR Imaging for assessing injury severity and prognosis in acute traumatic spinal cord injury[J]. Radiol Clin North Am, 2019, 57(2): 319-339.
[2]
Beeler WH, Paradis KC, Gemmete JJ, et al. Computed tomography myelosimulation versus magnetic resonance imaging registration to delineate the spinal cord during spine stereotactic radiosurgery[J]. World Neurosurg, 2019, 122: e655-e666.
[3]
Auletta L, Gramanzini M, Gargiulo S, et al. Advances in multimodal molecular imaging[J]. Q J Nucl Med Mol Imaging, 2017, 61(1): 19-32.
[4]
Kiessling F, Fokong S, Bzyl J, et al. Recent advances in molecular, multimodal and theranostic ultrasound imaging[J]. Adv Drug Deliv Rev, 2014, 72: 15-27.
[5]
Uludağ K, Roebroeck A. General overview on the merits of multimodal neuroimaging data fusion[J]. Neuroimage, 2014, 102(Pt 1): 3-10.
[6]
Calhoun VD, Sui J. Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2016, 1(3): 230-244.
[7]
Huber E, Lachappelle P, Sutter R, et al. Are midsagittal tissue bridges predictive of outcome after cervical spinal cord injury?[J]. Ann Neurol, 2017, 81(5): 740-748.
[8]
Vallotton K, Huber E, Sutter R, et al. Width and neurophysiologic properties of tissue bridges predict recovery after cervical injury[J]. Neurology, 2019, 92(24): e2793-e2802.
[9]
Farhadi HF, Kukreja S, Minnema A, et al. Impact of admission imaging findings on neurological outcomes in acute cervical traumatic spinal cord injury[J]. J Neurotrauma, 2018, 35(12): 1398-1406.
[10]
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury[J]. Nat Rev Dis Primers, 2017, 3: 17081.
[11]
Pfyffer D, Huber E, Sutter R, et al. Tissue bridges predict recovery after traumatic and ischemic thoracic spinal cord injury[J]. Neurology, 2019, 93(16): e1550-e1560.
[12]
Prados F, Ashburner J, Blaiotta C. Spinal cord grey matter segmentation challenge[J]. Neuroimage, 2017, 152: 312-329.
[13]
Grabher P, Callaghan MF, Ashburner J. Tracking sensory system atrophy and outcome prediction in spinal cord injury[J]. Ann Neurol, 2015, 78(5): 751-761.
[14]
Ziegler G, Grabher P, Thompson A, et al. Progressive neurodegeneration following spinal cord injury: implications for clinical trials[J]. Neurology, 2018, 90(14): e1257-e1266.
[15]
Huber E, David G, Thompson AJ, et al. Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury[J]. Neurology, 2018, 90(17): e1510-e1522.
[16]
David G, Seif M, Huber E, et al. In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury[J]. Neurology, 2019, 92(12): e1367-e1377.
[17]
Fehlings MG, Tetreault LA, Riew KD, et al. A clinical practice guideline for the management of patients with degenerative cervical myelopathy: recommendations for patients with mild, moderate, and severe disease and nonmyelopathic patients with evidence of cord compression[J]. Global Spine J, 2017, 7(3 Suppl): 70S-83S.
[18]
Fehlings MG, Martin AR, Tetreault LA, et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the role of baseline magnetic resonance imaging in clinical decision making and outcome prediction[J]. Global Spine J, 2017, 7(3 Suppl): 221S-230S.
[19]
Martin AR, Aleksanderek I, Cohen-Adad J, et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI[J]. Neuroimage Clin, 2015, 10: 192-238.
[20]
Wheeler-Kingshott CA, Stroman PW, Schwab JM, et al. The current state-of-the-art of spinal cord imaging: applications[J]. Neuroimage, 2014, 84: 1082-1093.
[21]
Grabher P, Mohammadi S, David G, et al. Neurodegeneration in the spinal ventral horn prior to motor impairment in cervical spondylotic myelopathy[J]. J Neurotrauma, 2017, 34(15): 2329-2334.
[22]
Huber E, Curt A, Freund P. Tracking trauma-induced structural and functional changes above the level of spinal cord injury[J]. Curr Opin Neurol, 2015, 28(4): 365-372.
[23]
Freund P, Seif M, Weiskopf N. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers[J]. Lancet Neurol, 2019, 18(12): 1123-1135.
[24]
Kucher K, Johns D, Maier D, et al. First-in-man intrathecal application of neurite growth-promoting anti-Nogo-A antibodies in acute spinal cord injury[J]. Neurorehabil Neural Repair, 2018, 32(6-7): 578-589.
[25]
Jungmann PM, Agten CA, Pfirrmann CW, et al. Advances in MRI around metal[J]. J Magn Reson Imaging, 2017, 46(4): 972-991.
[26]
Jungmann PM, Ganter C, Schaeffeler CJ, et al. View-angle tilting and slice-encoding metal artifact correction for artifact reduction in MRI: experimental sequence optimization for orthopaedic tumor endoprostheses and clinical application[J]. PLoS One, 2015, 10(4): e0124922.
[27]
Powers JM, Ioachim G, Stroman PW. Ten key insights into the use of spinal cord fMRI[J]. Brain Sci, 2018, 8(9): 173.
[28]
Stroman PW, Kornelsen J, Bergman A, et al. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging[J]. Spinal Cord, 2004, 42(4): 59-66.
[29]
Cadotte DW, Bosma R, Mikulis D, et al. Plasticity of the injured human spinal cord: insights revealed by spinal cord functional MRI[J]. PLoS One, 2012, 7(9): e45560.
[30]
Ellingson BM, Woodworth DC, Leu K, et al. Spinal cord perfusion MR imaging implicates both ischemia and hypoxia in the pathogenesis of cervical spondylosis[J]. World Neurosurg, 2019, 128: e773-e781.
[31]
Cohen-Adad J, El Mendili MM, Lehéricy S, et al. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI[J]. Neuroimage, 2011, 55(3): 1024-1033.
[32]
Wyss PO, Huber E, Curt A, et al. MR spectroscopy of the cervical spinal cord in chronic spinal cord injury[J]. Radiology, 2019, 291(1): 131-138.
[33]
高翔,温春生.研究应用螺旋CT技术诊断脊柱创伤的临床效果[J].影像研究与医学应用, 2017, 1(5): 78-79.
[34]
吕永彦,葛英辉.螺旋CT在脊柱创伤中的应用价值研究[J].现代医用影像学, 2018, 27(7): 2364-2365.
[35]
徐明奎,谭必勇,姚勇. CT引导下脊髓射频热凝术治疗脊髓损伤继发性神经病理性疼痛的有效性和安全性[J].现代肿瘤医学, 2016, 24(20): 3264-3267.
[36]
朱旻宇,田纪伟,滕红林,等.能谱CT脊髓前动脉造影在颈髓损伤患者中应用价值的初步探讨[J].中国骨伤, 2018, 31(5): 425-430.
[37]
Ito K, Yukawa Y, Ito K, et al. Dynamic changes in the spinal cord cross-sectional area in patients with myelopathy due to cervical ossification of posterior longitudinal ligament[J]. Spine J, 2015, 15(3): 461-466.
[38]
Bourgeois AC, Faulkner AR, Bradley YC, et al. Improved accuracy of minimally invasive transpedicular screw placement in the lumbar spine with 3-dimensional stereotactic image guidance: a comparative meta-analysis[J]. J Spinal Disord Tech, 2015, 28(9): 324-329.
[39]
Tian NF, Xu HZ. Image-guided pedicle screw insertion accuracy: a meta-analysis[J]. Int Orthop, 2009, 33(4): 895-903.
[40]
Gelalis ID, Paschos NK, Pakos EE, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques[J]. Eur Spine J, 2012, 21(2): 247-255.
[41]
Krauss H, Maier D, Bühren V, et al. Development of heterotopic ossifications, blood markers and outcome after radiation therapy in spinal cord injured patients[J]. Spinal Cord, 2015, 53(5): 345-348.
[42]
Özçakar L, Kara M, Chang KV, et al. Nineteen reasons why physiatrists should do musculoskeletal ultrasound: EURO-MUSCULUS/USPRM recommendations[J]. Am J Phys Med Rehabil, 2015, 94(6): e45-e49.
[43]
Lee J, Lee YS. Percutaneous chemical nerve block with ultrasoundguided intraneural injection[J]. Eur Radiol, 2008, 18(7): 1506-1512.
[44]
Tiftik T, Öztürk GT, Kara M, et al. Ultrasonographic evaluation of sciatic nerves in patients with spinal cord injury[J]. Spinal Cord, 2015, 53(1): 75-77.
[45]
von Leden RE, Selwyn RG, Jaiswal S, et al. (18)F-FDG-PET imaging of rat spinal cord demonstrates altered glucose uptake acutely after contusion injury[J]. Neurosci Lett, 2016, 621: 126-132.
[46]
Floeth FW, Stoffels G, Herdmann J, et al. Regional impairment of 18F-FDG uptake in the cervical spinal cord in patients with monosegmental chronic cervical myelopathy[J]. Eur Radiol, 2010, 20(12): 2925-2932.
[47]
Yoon EJ, Kim YK, Kim HR, et al. Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: a mechanistic PET study[J]. Neurorehabil Neural Repair, 2014, 28(3): 250-259.
[48]
Chen Q, Zheng W, Chen X, et al. Whether visual-related structural and functional changes occur in brain of patients with acute incomplete cervical cord injury: a multimodal based MRI study[J]. Neuroscience, 2018, 393: 284-294.
[49]
Allendoerfer J, Tanislav C. Diagnostic and prognostic value of contrast-enhanced ultrasound in acute stroke[J]. Ultraschall Med, 2008, 29(Suppl 4): S210-S214.
[50]
Welschehold S, Geisel F, Beyer C, et al. Contrast-enhanced transcranial doppler ultrasonography in the diagnosis of brain death[J]. J Neurol Neurosurg Psychiatry, 2013, 84(8): 939-940.
[51]
Fan CH, Ting CY, Lin HJ, et al. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery[J]. Biomaterials, 2013, 34(14): 3706-3715.
[52]
Kubelick KP, Emelianov SY. Prussian blue nanocubes as a multimodal contrast agent for image-guided stem cell therapy of the spinal cord[J]. Photoacoustics, 2020, 18: 100166.
[53]
Ko GB, Yoon HS, Kim KY, et al. Simultaneous multiparametric PET/MRI with silicon photomultiplier PET and ultra-high-field MRI for small-animal imaging[J]. J Nucl Med, 2016, 57(8): 1309-1315.
[54]
Judenhofer MS, Cherry SR. Applications for preclinical PET/MRI[J]. Semin Nucl Med, 2013, 43(1): 19-29.
[55]
Paulus DH, Thorwath D, Schmidt H, et al. Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning[J]. Med Phys, 2014, 41(7): 072505.
[56]
Krizsan AK, Lajtos I, Dahlbom M, et al. A Promising Future: comparable imaging capability of MRI-compatible silicon photomultiplier and conventional photosensor preclinical PET systems[J]. J Nucl Med, 2015, 56(12): 1948-1953.
[57]
Puttick S, Bell C, Dowson N, et al. PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma[J]. Drug Discov Today, 2015, 20(3): 306-317.
[58]
Aiello M, Cavaliere C, Salvatore M. Hybrid PET/MR Imaging and Brain Connectivity[J]. Front Neurosci, 2016, 10: 64.
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 任书堂, 刘晓程, 张亚东, 孙佳英, 陈萍, 周建华, 龙进, 黄云洲. 左心室辅助装置支持下单纯收缩期主动脉瓣反流的超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1023-1028.
[3] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[4] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[5] 吕琦, 惠品晶, 丁亚芳, 颜燕红. 颈动脉斑块易损性的超声造影评估及与缺血性卒中的相关性研究[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1040-1045.
[6] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[7] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[8] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[9] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[10] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[11] 丁雷, 罗文, 杨晓, 庞丽娜, 张佩蒂, 刘海静, 袁佳妮, 刘瑾. 高帧频超声造影在评价C-TIRADS 4-5类甲状腺结节成像特征中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(09): 887-894.
[12] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[13] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[14] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
[15] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
阅读次数
全文


摘要