[1] |
Talbott JF, Huie JR, Ferguson AR, et al. MR Imaging for assessing injury severity and prognosis in acute traumatic spinal cord injury[J]. Radiol Clin North Am, 2019, 57(2): 319-339.
|
[2] |
Beeler WH, Paradis KC, Gemmete JJ, et al. Computed tomography myelosimulation versus magnetic resonance imaging registration to delineate the spinal cord during spine stereotactic radiosurgery[J]. World Neurosurg, 2019, 122: e655-e666.
|
[3] |
Auletta L, Gramanzini M, Gargiulo S, et al. Advances in multimodal molecular imaging[J]. Q J Nucl Med Mol Imaging, 2017, 61(1): 19-32.
|
[4] |
Kiessling F, Fokong S, Bzyl J, et al. Recent advances in molecular, multimodal and theranostic ultrasound imaging[J]. Adv Drug Deliv Rev, 2014, 72: 15-27.
|
[5] |
Uludağ K, Roebroeck A. General overview on the merits of multimodal neuroimaging data fusion[J]. Neuroimage, 2014, 102(Pt 1): 3-10.
|
[6] |
Calhoun VD, Sui J. Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2016, 1(3): 230-244.
|
[7] |
Huber E, Lachappelle P, Sutter R, et al. Are midsagittal tissue bridges predictive of outcome after cervical spinal cord injury?[J]. Ann Neurol, 2017, 81(5): 740-748.
|
[8] |
Vallotton K, Huber E, Sutter R, et al. Width and neurophysiologic properties of tissue bridges predict recovery after cervical injury[J]. Neurology, 2019, 92(24): e2793-e2802.
|
[9] |
Farhadi HF, Kukreja S, Minnema A, et al. Impact of admission imaging findings on neurological outcomes in acute cervical traumatic spinal cord injury[J]. J Neurotrauma, 2018, 35(12): 1398-1406.
|
[10] |
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury[J]. Nat Rev Dis Primers, 2017, 3: 17081.
|
[11] |
Pfyffer D, Huber E, Sutter R, et al. Tissue bridges predict recovery after traumatic and ischemic thoracic spinal cord injury[J]. Neurology, 2019, 93(16): e1550-e1560.
|
[12] |
Prados F, Ashburner J, Blaiotta C. Spinal cord grey matter segmentation challenge[J]. Neuroimage, 2017, 152: 312-329.
|
[13] |
Grabher P, Callaghan MF, Ashburner J. Tracking sensory system atrophy and outcome prediction in spinal cord injury[J]. Ann Neurol, 2015, 78(5): 751-761.
|
[14] |
Ziegler G, Grabher P, Thompson A, et al. Progressive neurodegeneration following spinal cord injury: implications for clinical trials[J]. Neurology, 2018, 90(14): e1257-e1266.
|
[15] |
Huber E, David G, Thompson AJ, et al. Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury[J]. Neurology, 2018, 90(17): e1510-e1522.
|
[16] |
David G, Seif M, Huber E, et al. In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury[J]. Neurology, 2019, 92(12): e1367-e1377.
|
[17] |
Fehlings MG, Tetreault LA, Riew KD, et al. A clinical practice guideline for the management of patients with degenerative cervical myelopathy: recommendations for patients with mild, moderate, and severe disease and nonmyelopathic patients with evidence of cord compression[J]. Global Spine J, 2017, 7(3 Suppl): 70S-83S.
|
[18] |
Fehlings MG, Martin AR, Tetreault LA, et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the role of baseline magnetic resonance imaging in clinical decision making and outcome prediction[J]. Global Spine J, 2017, 7(3 Suppl): 221S-230S.
|
[19] |
Martin AR, Aleksanderek I, Cohen-Adad J, et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI[J]. Neuroimage Clin, 2015, 10: 192-238.
|
[20] |
Wheeler-Kingshott CA, Stroman PW, Schwab JM, et al. The current state-of-the-art of spinal cord imaging: applications[J]. Neuroimage, 2014, 84: 1082-1093.
|
[21] |
Grabher P, Mohammadi S, David G, et al. Neurodegeneration in the spinal ventral horn prior to motor impairment in cervical spondylotic myelopathy[J]. J Neurotrauma, 2017, 34(15): 2329-2334.
|
[22] |
Huber E, Curt A, Freund P. Tracking trauma-induced structural and functional changes above the level of spinal cord injury[J]. Curr Opin Neurol, 2015, 28(4): 365-372.
|
[23] |
Freund P, Seif M, Weiskopf N. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers[J]. Lancet Neurol, 2019, 18(12): 1123-1135.
|
[24] |
Kucher K, Johns D, Maier D, et al. First-in-man intrathecal application of neurite growth-promoting anti-Nogo-A antibodies in acute spinal cord injury[J]. Neurorehabil Neural Repair, 2018, 32(6-7): 578-589.
|
[25] |
Jungmann PM, Agten CA, Pfirrmann CW, et al. Advances in MRI around metal[J]. J Magn Reson Imaging, 2017, 46(4): 972-991.
|
[26] |
Jungmann PM, Ganter C, Schaeffeler CJ, et al. View-angle tilting and slice-encoding metal artifact correction for artifact reduction in MRI: experimental sequence optimization for orthopaedic tumor endoprostheses and clinical application[J]. PLoS One, 2015, 10(4): e0124922.
|
[27] |
Powers JM, Ioachim G, Stroman PW. Ten key insights into the use of spinal cord fMRI[J]. Brain Sci, 2018, 8(9): 173.
|
[28] |
Stroman PW, Kornelsen J, Bergman A, et al. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging[J]. Spinal Cord, 2004, 42(4): 59-66.
|
[29] |
Cadotte DW, Bosma R, Mikulis D, et al. Plasticity of the injured human spinal cord: insights revealed by spinal cord functional MRI[J]. PLoS One, 2012, 7(9): e45560.
|
[30] |
Ellingson BM, Woodworth DC, Leu K, et al. Spinal cord perfusion MR imaging implicates both ischemia and hypoxia in the pathogenesis of cervical spondylosis[J]. World Neurosurg, 2019, 128: e773-e781.
|
[31] |
Cohen-Adad J, El Mendili MM, Lehéricy S, et al. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI[J]. Neuroimage, 2011, 55(3): 1024-1033.
|
[32] |
Wyss PO, Huber E, Curt A, et al. MR spectroscopy of the cervical spinal cord in chronic spinal cord injury[J]. Radiology, 2019, 291(1): 131-138.
|
[33] |
高翔,温春生.研究应用螺旋CT技术诊断脊柱创伤的临床效果[J].影像研究与医学应用, 2017, 1(5): 78-79.
|
[34] |
吕永彦,葛英辉.螺旋CT在脊柱创伤中的应用价值研究[J].现代医用影像学, 2018, 27(7): 2364-2365.
|
[35] |
徐明奎,谭必勇,姚勇. CT引导下脊髓射频热凝术治疗脊髓损伤继发性神经病理性疼痛的有效性和安全性[J].现代肿瘤医学, 2016, 24(20): 3264-3267.
|
[36] |
朱旻宇,田纪伟,滕红林,等.能谱CT脊髓前动脉造影在颈髓损伤患者中应用价值的初步探讨[J].中国骨伤, 2018, 31(5): 425-430.
|
[37] |
Ito K, Yukawa Y, Ito K, et al. Dynamic changes in the spinal cord cross-sectional area in patients with myelopathy due to cervical ossification of posterior longitudinal ligament[J]. Spine J, 2015, 15(3): 461-466.
|
[38] |
Bourgeois AC, Faulkner AR, Bradley YC, et al. Improved accuracy of minimally invasive transpedicular screw placement in the lumbar spine with 3-dimensional stereotactic image guidance: a comparative meta-analysis[J]. J Spinal Disord Tech, 2015, 28(9): 324-329.
|
[39] |
Tian NF, Xu HZ. Image-guided pedicle screw insertion accuracy: a meta-analysis[J]. Int Orthop, 2009, 33(4): 895-903.
|
[40] |
Gelalis ID, Paschos NK, Pakos EE, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques[J]. Eur Spine J, 2012, 21(2): 247-255.
|
[41] |
Krauss H, Maier D, Bühren V, et al. Development of heterotopic ossifications, blood markers and outcome after radiation therapy in spinal cord injured patients[J]. Spinal Cord, 2015, 53(5): 345-348.
|
[42] |
Özçakar L, Kara M, Chang KV, et al. Nineteen reasons why physiatrists should do musculoskeletal ultrasound: EURO-MUSCULUS/USPRM recommendations[J]. Am J Phys Med Rehabil, 2015, 94(6): e45-e49.
|
[43] |
Lee J, Lee YS. Percutaneous chemical nerve block with ultrasoundguided intraneural injection[J]. Eur Radiol, 2008, 18(7): 1506-1512.
|
[44] |
Tiftik T, Öztürk GT, Kara M, et al. Ultrasonographic evaluation of sciatic nerves in patients with spinal cord injury[J]. Spinal Cord, 2015, 53(1): 75-77.
|
[45] |
von Leden RE, Selwyn RG, Jaiswal S, et al. (18)F-FDG-PET imaging of rat spinal cord demonstrates altered glucose uptake acutely after contusion injury[J]. Neurosci Lett, 2016, 621: 126-132.
|
[46] |
Floeth FW, Stoffels G, Herdmann J, et al. Regional impairment of 18F-FDG uptake in the cervical spinal cord in patients with monosegmental chronic cervical myelopathy[J]. Eur Radiol, 2010, 20(12): 2925-2932.
|
[47] |
Yoon EJ, Kim YK, Kim HR, et al. Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: a mechanistic PET study[J]. Neurorehabil Neural Repair, 2014, 28(3): 250-259.
|
[48] |
Chen Q, Zheng W, Chen X, et al. Whether visual-related structural and functional changes occur in brain of patients with acute incomplete cervical cord injury: a multimodal based MRI study[J]. Neuroscience, 2018, 393: 284-294.
|
[49] |
Allendoerfer J, Tanislav C. Diagnostic and prognostic value of contrast-enhanced ultrasound in acute stroke[J]. Ultraschall Med, 2008, 29(Suppl 4): S210-S214.
|
[50] |
Welschehold S, Geisel F, Beyer C, et al. Contrast-enhanced transcranial doppler ultrasonography in the diagnosis of brain death[J]. J Neurol Neurosurg Psychiatry, 2013, 84(8): 939-940.
|
[51] |
Fan CH, Ting CY, Lin HJ, et al. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery[J]. Biomaterials, 2013, 34(14): 3706-3715.
|
[52] |
Kubelick KP, Emelianov SY. Prussian blue nanocubes as a multimodal contrast agent for image-guided stem cell therapy of the spinal cord[J]. Photoacoustics, 2020, 18: 100166.
|
[53] |
Ko GB, Yoon HS, Kim KY, et al. Simultaneous multiparametric PET/MRI with silicon photomultiplier PET and ultra-high-field MRI for small-animal imaging[J]. J Nucl Med, 2016, 57(8): 1309-1315.
|
[54] |
Judenhofer MS, Cherry SR. Applications for preclinical PET/MRI[J]. Semin Nucl Med, 2013, 43(1): 19-29.
|
[55] |
Paulus DH, Thorwath D, Schmidt H, et al. Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning[J]. Med Phys, 2014, 41(7): 072505.
|
[56] |
Krizsan AK, Lajtos I, Dahlbom M, et al. A Promising Future: comparable imaging capability of MRI-compatible silicon photomultiplier and conventional photosensor preclinical PET systems[J]. J Nucl Med, 2015, 56(12): 1948-1953.
|
[57] |
Puttick S, Bell C, Dowson N, et al. PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma[J]. Drug Discov Today, 2015, 20(3): 306-317.
|
[58] |
Aiello M, Cavaliere C, Salvatore M. Hybrid PET/MR Imaging and Brain Connectivity[J]. Front Neurosci, 2016, 10: 64.
|