切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2020, Vol. 06 ›› Issue (05) : 312 -316. doi: 10.3877/cma.j.issn.2095-9141.2020.05.013

所属专题: 文献

综述

多模态影像学技术在脊髓损伤诊疗中的应用
张鑫1, 谢佳芯2, 封亚平2,()   
  1. 1. 650032 昆明,昆明医科大学研究生院
    2. 650032 昆明,联勤保障部队第九二〇医院神经外科
  • 收稿日期:2020-08-21 出版日期:2020-10-15
  • 通信作者: 封亚平

Application of multimodality imaging in the diagnosis and treatment of spinal cord injury

Xin Zhang1, Jiaxin Xie2, Yaping Feng2,()   

  1. 1. Graduate School, Kunming Medical University, Kunming 650032, China
    2. Department of Neurosurgery, 920 Hospital of Joint Logistics Support Force, Kunming 650032, China
  • Received:2020-08-21 Published:2020-10-15
  • Corresponding author: Yaping Feng
  • About author:
    Corresponding author: Feng Yaping, Email:
引用本文:

张鑫, 谢佳芯, 封亚平. 多模态影像学技术在脊髓损伤诊疗中的应用[J/OL]. 中华神经创伤外科电子杂志, 2020, 06(05): 312-316.

Xin Zhang, Jiaxin Xie, Yaping Feng. Application of multimodality imaging in the diagnosis and treatment of spinal cord injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2020, 06(05): 312-316.

目前脊髓损伤(SCI)评价和治疗效果验证主要依靠临床的主观判断以及传统的影像学检查方法。近年来,随着多模态影像学技术的发展,临床医生在SCI的诊治过程中可以从不同的角度进行更为详尽的影像学检查。本文就近年来国内外关于多模态影像学技术在SCI领域应用的研究进展作一综述。

At present, the evaluation of spinal cord injury and the verification of therapeutic effect in clinical work mainly rely on clinical subjective evaluation and traditional imaging methods. In recent years, with the development of multimodality imaging technology, clinicians can conduct more detailed imaging examination on the diagnosis and treatment of spinal cord injury from different angles. This paper reviews the research progress in the application of multimodality imaging in the field of spinal cord injury at home and abroad in recent years.

[1]
Talbott JF, Huie JR, Ferguson AR, et al. MR Imaging for assessing injury severity and prognosis in acute traumatic spinal cord injury[J]. Radiol Clin North Am, 2019, 57(2): 319-339.
[2]
Beeler WH, Paradis KC, Gemmete JJ, et al. Computed tomography myelosimulation versus magnetic resonance imaging registration to delineate the spinal cord during spine stereotactic radiosurgery[J]. World Neurosurg, 2019, 122: e655-e666.
[3]
Auletta L, Gramanzini M, Gargiulo S, et al. Advances in multimodal molecular imaging[J]. Q J Nucl Med Mol Imaging, 2017, 61(1): 19-32.
[4]
Kiessling F, Fokong S, Bzyl J, et al. Recent advances in molecular, multimodal and theranostic ultrasound imaging[J]. Adv Drug Deliv Rev, 2014, 72: 15-27.
[5]
Uludağ K, Roebroeck A. General overview on the merits of multimodal neuroimaging data fusion[J]. Neuroimage, 2014, 102(Pt 1): 3-10.
[6]
Calhoun VD, Sui J. Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2016, 1(3): 230-244.
[7]
Huber E, Lachappelle P, Sutter R, et al. Are midsagittal tissue bridges predictive of outcome after cervical spinal cord injury?[J]. Ann Neurol, 2017, 81(5): 740-748.
[8]
Vallotton K, Huber E, Sutter R, et al. Width and neurophysiologic properties of tissue bridges predict recovery after cervical injury[J]. Neurology, 2019, 92(24): e2793-e2802.
[9]
Farhadi HF, Kukreja S, Minnema A, et al. Impact of admission imaging findings on neurological outcomes in acute cervical traumatic spinal cord injury[J]. J Neurotrauma, 2018, 35(12): 1398-1406.
[10]
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury[J]. Nat Rev Dis Primers, 2017, 3: 17081.
[11]
Pfyffer D, Huber E, Sutter R, et al. Tissue bridges predict recovery after traumatic and ischemic thoracic spinal cord injury[J]. Neurology, 2019, 93(16): e1550-e1560.
[12]
Prados F, Ashburner J, Blaiotta C. Spinal cord grey matter segmentation challenge[J]. Neuroimage, 2017, 152: 312-329.
[13]
Grabher P, Callaghan MF, Ashburner J. Tracking sensory system atrophy and outcome prediction in spinal cord injury[J]. Ann Neurol, 2015, 78(5): 751-761.
[14]
Ziegler G, Grabher P, Thompson A, et al. Progressive neurodegeneration following spinal cord injury: implications for clinical trials[J]. Neurology, 2018, 90(14): e1257-e1266.
[15]
Huber E, David G, Thompson AJ, et al. Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury[J]. Neurology, 2018, 90(17): e1510-e1522.
[16]
David G, Seif M, Huber E, et al. In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury[J]. Neurology, 2019, 92(12): e1367-e1377.
[17]
Fehlings MG, Tetreault LA, Riew KD, et al. A clinical practice guideline for the management of patients with degenerative cervical myelopathy: recommendations for patients with mild, moderate, and severe disease and nonmyelopathic patients with evidence of cord compression[J]. Global Spine J, 2017, 7(3 Suppl): 70S-83S.
[18]
Fehlings MG, Martin AR, Tetreault LA, et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the role of baseline magnetic resonance imaging in clinical decision making and outcome prediction[J]. Global Spine J, 2017, 7(3 Suppl): 221S-230S.
[19]
Martin AR, Aleksanderek I, Cohen-Adad J, et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI[J]. Neuroimage Clin, 2015, 10: 192-238.
[20]
Wheeler-Kingshott CA, Stroman PW, Schwab JM, et al. The current state-of-the-art of spinal cord imaging: applications[J]. Neuroimage, 2014, 84: 1082-1093.
[21]
Grabher P, Mohammadi S, David G, et al. Neurodegeneration in the spinal ventral horn prior to motor impairment in cervical spondylotic myelopathy[J]. J Neurotrauma, 2017, 34(15): 2329-2334.
[22]
Huber E, Curt A, Freund P. Tracking trauma-induced structural and functional changes above the level of spinal cord injury[J]. Curr Opin Neurol, 2015, 28(4): 365-372.
[23]
Freund P, Seif M, Weiskopf N. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers[J]. Lancet Neurol, 2019, 18(12): 1123-1135.
[24]
Kucher K, Johns D, Maier D, et al. First-in-man intrathecal application of neurite growth-promoting anti-Nogo-A antibodies in acute spinal cord injury[J]. Neurorehabil Neural Repair, 2018, 32(6-7): 578-589.
[25]
Jungmann PM, Agten CA, Pfirrmann CW, et al. Advances in MRI around metal[J]. J Magn Reson Imaging, 2017, 46(4): 972-991.
[26]
Jungmann PM, Ganter C, Schaeffeler CJ, et al. View-angle tilting and slice-encoding metal artifact correction for artifact reduction in MRI: experimental sequence optimization for orthopaedic tumor endoprostheses and clinical application[J]. PLoS One, 2015, 10(4): e0124922.
[27]
Powers JM, Ioachim G, Stroman PW. Ten key insights into the use of spinal cord fMRI[J]. Brain Sci, 2018, 8(9): 173.
[28]
Stroman PW, Kornelsen J, Bergman A, et al. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging[J]. Spinal Cord, 2004, 42(4): 59-66.
[29]
Cadotte DW, Bosma R, Mikulis D, et al. Plasticity of the injured human spinal cord: insights revealed by spinal cord functional MRI[J]. PLoS One, 2012, 7(9): e45560.
[30]
Ellingson BM, Woodworth DC, Leu K, et al. Spinal cord perfusion MR imaging implicates both ischemia and hypoxia in the pathogenesis of cervical spondylosis[J]. World Neurosurg, 2019, 128: e773-e781.
[31]
Cohen-Adad J, El Mendili MM, Lehéricy S, et al. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI[J]. Neuroimage, 2011, 55(3): 1024-1033.
[32]
Wyss PO, Huber E, Curt A, et al. MR spectroscopy of the cervical spinal cord in chronic spinal cord injury[J]. Radiology, 2019, 291(1): 131-138.
[33]
高翔,温春生.研究应用螺旋CT技术诊断脊柱创伤的临床效果[J].影像研究与医学应用, 2017, 1(5): 78-79.
[34]
吕永彦,葛英辉.螺旋CT在脊柱创伤中的应用价值研究[J].现代医用影像学, 2018, 27(7): 2364-2365.
[35]
徐明奎,谭必勇,姚勇. CT引导下脊髓射频热凝术治疗脊髓损伤继发性神经病理性疼痛的有效性和安全性[J].现代肿瘤医学, 2016, 24(20): 3264-3267.
[36]
朱旻宇,田纪伟,滕红林,等.能谱CT脊髓前动脉造影在颈髓损伤患者中应用价值的初步探讨[J].中国骨伤, 2018, 31(5): 425-430.
[37]
Ito K, Yukawa Y, Ito K, et al. Dynamic changes in the spinal cord cross-sectional area in patients with myelopathy due to cervical ossification of posterior longitudinal ligament[J]. Spine J, 2015, 15(3): 461-466.
[38]
Bourgeois AC, Faulkner AR, Bradley YC, et al. Improved accuracy of minimally invasive transpedicular screw placement in the lumbar spine with 3-dimensional stereotactic image guidance: a comparative meta-analysis[J]. J Spinal Disord Tech, 2015, 28(9): 324-329.
[39]
Tian NF, Xu HZ. Image-guided pedicle screw insertion accuracy: a meta-analysis[J]. Int Orthop, 2009, 33(4): 895-903.
[40]
Gelalis ID, Paschos NK, Pakos EE, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques[J]. Eur Spine J, 2012, 21(2): 247-255.
[41]
Krauss H, Maier D, Bühren V, et al. Development of heterotopic ossifications, blood markers and outcome after radiation therapy in spinal cord injured patients[J]. Spinal Cord, 2015, 53(5): 345-348.
[42]
Özçakar L, Kara M, Chang KV, et al. Nineteen reasons why physiatrists should do musculoskeletal ultrasound: EURO-MUSCULUS/USPRM recommendations[J]. Am J Phys Med Rehabil, 2015, 94(6): e45-e49.
[43]
Lee J, Lee YS. Percutaneous chemical nerve block with ultrasoundguided intraneural injection[J]. Eur Radiol, 2008, 18(7): 1506-1512.
[44]
Tiftik T, Öztürk GT, Kara M, et al. Ultrasonographic evaluation of sciatic nerves in patients with spinal cord injury[J]. Spinal Cord, 2015, 53(1): 75-77.
[45]
von Leden RE, Selwyn RG, Jaiswal S, et al. (18)F-FDG-PET imaging of rat spinal cord demonstrates altered glucose uptake acutely after contusion injury[J]. Neurosci Lett, 2016, 621: 126-132.
[46]
Floeth FW, Stoffels G, Herdmann J, et al. Regional impairment of 18F-FDG uptake in the cervical spinal cord in patients with monosegmental chronic cervical myelopathy[J]. Eur Radiol, 2010, 20(12): 2925-2932.
[47]
Yoon EJ, Kim YK, Kim HR, et al. Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: a mechanistic PET study[J]. Neurorehabil Neural Repair, 2014, 28(3): 250-259.
[48]
Chen Q, Zheng W, Chen X, et al. Whether visual-related structural and functional changes occur in brain of patients with acute incomplete cervical cord injury: a multimodal based MRI study[J]. Neuroscience, 2018, 393: 284-294.
[49]
Allendoerfer J, Tanislav C. Diagnostic and prognostic value of contrast-enhanced ultrasound in acute stroke[J]. Ultraschall Med, 2008, 29(Suppl 4): S210-S214.
[50]
Welschehold S, Geisel F, Beyer C, et al. Contrast-enhanced transcranial doppler ultrasonography in the diagnosis of brain death[J]. J Neurol Neurosurg Psychiatry, 2013, 84(8): 939-940.
[51]
Fan CH, Ting CY, Lin HJ, et al. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery[J]. Biomaterials, 2013, 34(14): 3706-3715.
[52]
Kubelick KP, Emelianov SY. Prussian blue nanocubes as a multimodal contrast agent for image-guided stem cell therapy of the spinal cord[J]. Photoacoustics, 2020, 18: 100166.
[53]
Ko GB, Yoon HS, Kim KY, et al. Simultaneous multiparametric PET/MRI with silicon photomultiplier PET and ultra-high-field MRI for small-animal imaging[J]. J Nucl Med, 2016, 57(8): 1309-1315.
[54]
Judenhofer MS, Cherry SR. Applications for preclinical PET/MRI[J]. Semin Nucl Med, 2013, 43(1): 19-29.
[55]
Paulus DH, Thorwath D, Schmidt H, et al. Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning[J]. Med Phys, 2014, 41(7): 072505.
[56]
Krizsan AK, Lajtos I, Dahlbom M, et al. A Promising Future: comparable imaging capability of MRI-compatible silicon photomultiplier and conventional photosensor preclinical PET systems[J]. J Nucl Med, 2015, 56(12): 1948-1953.
[57]
Puttick S, Bell C, Dowson N, et al. PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma[J]. Drug Discov Today, 2015, 20(3): 306-317.
[58]
Aiello M, Cavaliere C, Salvatore M. Hybrid PET/MR Imaging and Brain Connectivity[J]. Front Neurosci, 2016, 10: 64.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 李晓妮, 卫青, 孟庆龙, 牛丽莉, 田月, 吴伟春, 朱振辉, 王浩. 超声心动图在孤立性左心室心尖发育不良疾病中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 937-942.
[3] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[4] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[5] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[6] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[7] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[8] 包艳娟, 杨小红, 张涛, 赵胜, 张莉. 阴道斜隔综合征的超声诊断与临床分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 859-864.
[9] 汪洪斌, 张红霞, 何文, 杜丽娟, 程令刚, 张雨康, 张萌. 低级别阑尾黏液性肿瘤与阑尾黏液腺癌超声及超声造影特征分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 865-871.
[10] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[11] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[12] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[13] 宋勇, 李东炫, 王翔, 李锐. 基于数据挖掘法分析3 种超声造影剂不良反应信号[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 890-898.
[14] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[15] 韩戟, 杨力, 陈玉. 腹部形态CT参数与完全腹腔镜全胃切除术术中失血量的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 88-91.
阅读次数
全文


摘要