切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2018, Vol. 04 ›› Issue (05) : 283 -290. doi: 10.3877/cma.j.issn.2095-9141.2018.05.008

所属专题: 文献

基础研究

RIP1/RIP3通路介导氯化血红素诱导的HT-22海马神经细胞损伤的研究
苏兴奋1,(), 王汉东2, 林元相1, 陈伏祥1   
  1. 1. 350005 福州,福建医科大学附属第一医院神经外科
    2. 210002 南京,南京大学医学院附属金陵医院神经外科
  • 收稿日期:2018-07-23 出版日期:2018-10-15
  • 通信作者: 苏兴奋
  • 基金资助:
    福建省自然科学基金(2015J05149); 国家自然科学基金青年课题(81501012)

Receptor interacting protein kinases 1 and 3 mediate hemin induced cell death in HT-22 hippocampal neuronal cells

Xingfen Su1,(), Handong Wang2, Yuanxiang Lin1, Fuxiang Chen1   

  1. 1. Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
    2. Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
  • Received:2018-07-23 Published:2018-10-15
  • Corresponding author: Xingfen Su
  • About author:
    Corresponding author: Su Xingfen, Email:
引用本文:

苏兴奋, 王汉东, 林元相, 陈伏祥. RIP1/RIP3通路介导氯化血红素诱导的HT-22海马神经细胞损伤的研究[J]. 中华神经创伤外科电子杂志, 2018, 04(05): 283-290.

Xingfen Su, Handong Wang, Yuanxiang Lin, Fuxiang Chen. Receptor interacting protein kinases 1 and 3 mediate hemin induced cell death in HT-22 hippocampal neuronal cells[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2018, 04(05): 283-290.

目的

探索受体相互作用蛋白激酶1(RIP1)/RIP3通路是否参与氯化血红素(hemin)诱导的HT-22海马神经细胞损伤以及研究Necrostatin-1(Nec-1)在hemin诱导的HT-22细胞死亡中潜在的神经保护作用。

方法

给予不同浓度的hemin(0、25、50、100 μmol/L)作用HT-22细胞24 h后测定碘化丙啶(PI)阳性细胞数和细胞存活率。用Necrostatin-1、zVAD和活性氧(ROS)清除剂叔丁基茴香醚(BHA)分别处理hemin诱导的HT-22细胞,24 h后分别测定各组PI+细胞数、细胞存活率,使用MitoSox Red指示ROS水平。最后研究使用siRNA敲低RIP3水平对hemin诱导HT-22细胞死亡的影响,测定各组PI+细胞数、细胞存活率及ROS水平。

结果

Hemin可剂量依赖性的诱导HT-22神经细胞死亡;RIP1抑制剂Necrostatin-1可显著抑制hemin诱导的HT-22细胞死亡,PI+细胞数明显减少,细胞存活率提高,并且减少ROS积聚;BHA可显著减少hemin诱导的HT-22细胞的PI+细胞数。更进一步的使用siRNA敲低RIP3表达水平可以显著减少hemin诱导的HT-22细胞死亡,PI+细胞数明显减少,细胞存活率明显提高,ROS积聚水平显著减低。

结论

RIP1/RIP3通路及ROS可能介导hemin诱导的HT-22海马神经元细胞死亡,Necrostatin-1在其中起神经保护作用。

Objective

To explore whether receptor interacting protein kinase 1 (RIP1)/RIP3 pathways participate in hemin induced cell death in HT-22 hippocampal neuronal cells and investigate the potential neuroprotection of necrostatin-1 in hemin induced cell death in HT-22.

Methods

First, different concentrations of hemin (0, 25, 50, 100 μmol/L) were added to HT-22 cells. Propidium iodide (PI) positive cells and cell viability were measured at 24 h after hemin treatment. Then, necrostatin-1, zVAD and reactive oxygen species (ROS) scavenger butylated hydroxyanisole (BHA) were applied to hemin-treated HT-22 cells. PI+ cells and cell viability were measured at 24 h after hemin treatment. MitoSox Red was used to indicate ROS level. Last, the effect of RIP3 in hemin induced HT-22 cell death was explored through RIP3 knockdown using siRNA. PI+ cells, cell viability and ROS lever were measured at 24 h after hemin treatment.

Results

Hemin could induce a dose dependent cell death in HT22 neural cells. RIP1 specific inhibitor necrostatin-1 significantly inhibited cell death induced by hemin in HT-22 cells, greatly reducing PI+ cells, dramatically improving cell viability and decreasing ROS accumulation. BHA could significantly inhibit PI+ cells induced by hemin in HT-22 cells. Furthermore, silencing of RIP3 using siRNA attenuated hemin induced cell death in HT-22 cells, greatly reducing PI+ cells, dramatically improving cell viability and decreasing ROS accumulation.

Conclusion

These data revealed that RIP1/ RIP3 pathway and ROS might mediate hemin induced cell death in HT-22 hippocampus neural cells, and necrostatin-1 played a neuroprotection role in hemin induced cell death in HT-22.

图1 氯化血红素剂量依赖性的诱导HT-22细胞死亡
图2 Nec-1和zVAD对氯化血红素诱导的HT-22细胞死亡的影响
图3 Nec-1对氯化血红素诱导HT-22细胞产生的活性氧的影响
图4 活性氧清除剂叔丁基羟基茴香醚对氯化血红素诱导HT-22细胞死亡的影响
图5 敲低受体相互作用蛋白激酶3水平抑制氯化血红素诱导HT-22细胞死亡
[1]
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets[J]. Lancet Neurol, 2012, 11(8): 720-731.
[2]
Robinson SR, Dang TN, Dringen R, et al. Hemin toxicity: a preventable source of brain damage following hemorrhagic stroke[J]. Redox Rep, 2009, 14(6): 228-235.
[3]
Regan RF, Chen J, Benvenisti-Zarom L. Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin[J]. BMC Neurosci, 2004, 5(1): 34.
[4]
Laird MD, Wakade C, Alleyne CH Jr., et al. Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes[J]. Free Radic Biol Med, 2008, 45(8): 1103-1114.
[5]
Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion[J]. Nat Rev Mol Cell Biol, 2010, 11(10): 700-714.
[6]
Xu X, Chua CC, Kong J, et al. Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells[J]. J Neurochem, 2007, 103(5): 2004-2014.
[7]
Li Y, Yang X, Ma C, et al. Necroptosis contributes to the NMDA- induced excitotoxicity in rat’s cultured cortical neurons[J]. Neurosci Lett, 2008, 447(2-3): 120-123.
[8]
Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis[J]. Science, 2009, 325(5938): 332-336.
[9]
Galluzzi L, Vanden Berghe T, Vanlangenakker N, et al. Programmed necrosis from molecules to health and disease[J]. Int Rev Cell Mol Biol, 2011, 289: 1-35.
[10]
He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha[J]. Cell, 2009, 137(6): 1100-1111.
[11]
Vanlangenakker N, Vanden Berghe T, Vandenabeele P. Many stimuli pull the necrotic trigger, an overview[J]. Cell Death Differ, 2012, 19(1): 75-86.
[12]
Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury[J]. Stroke, 2011, 42(6): 1781-1786.
[13]
Vandenabeele P, Declercq W, Van Herreweghe F, et al. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis[J]. Sci Signal, 2010, 3(115): re4.
[14]
Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2): 112-119.
[15]
You Z, Savitz SI, Yang J, et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice[J]. J Cereb Blood Flow Metab, 2008, 28(9): 1564-1573.
[16]
Su X, Wang H, Kang D, et al. Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway[J]. Neurochem Res, 2015, 40(4): 643-650.
[17]
Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins[J]. Nat Chem Biol, 2008, 4(5): 313-321.
[18]
Zhu X, Tao L, Tejima-Mandeville E, et al. Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice[J]. Stroke, 2012, 43(2): 524-531.
[19]
Zille M, Karuppagounder SS, Chen Y, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis[J]. Stroke, 2017, 48(4): 1033-1043.
[20]
Lule S, Wu L, McAllister LM, et al. Genetic inhibition of receptor interacting protein kinase-1 reduces cell death and improves functional outcome after intracerebral hemorrhage in mice[J]. Stroke, 2017, 48(9): 2549-2556.
[1] 柳成林, 荀文兴, 杨海珍, 范素萌, 刘宇博, 张红梅. 程序性坏死特异性抑制剂-1对高糖环境下牙周膜干细胞增殖和成骨分化的影响[J]. 中华口腔医学研究杂志(电子版), 2022, 16(03): 160-167.
[2] 詹雅清, 赖汉津, 沈建通, 温仕宏, 黄文起. 程序性坏死的发生机制及其在缺血损伤性疾病中的研究进展[J]. 中华普通外科学文献(电子版), 2021, 15(03): 224-228.
阅读次数
全文


摘要