切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2018, Vol. 04 ›› Issue (03) : 175 -178. doi: 10.3877/cma.j.issn.2095-9141.2018.03.011

所属专题: 文献

综述

ICU获得性肌无力的研究进展
宛荣豪1, 陈一凡1, 李磊1, 高亮1,()   
  1. 1. 200072 上海,同济大学附属第十人民医院神经外科
  • 收稿日期:2018-02-09 出版日期:2018-06-15
  • 通信作者: 高亮

Recent advance in intensive care unit-acquired muscle weakness

Ronghao Wan1, Yifan Chen1, Lei Li1, Liang Gao1,()   

  1. 1. Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
  • Received:2018-02-09 Published:2018-06-15
  • Corresponding author: Liang Gao
  • About author:
    Corresponding author: Gao Liang, Email:
引用本文:

宛荣豪, 陈一凡, 李磊, 高亮. ICU获得性肌无力的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2018, 04(03): 175-178.

Ronghao Wan, Yifan Chen, Lei Li, Liang Gao. Recent advance in intensive care unit-acquired muscle weakness[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2018, 04(03): 175-178.

很多急危重症或经历复杂手术的患者往往需要入住重症监护病房(ICU)治疗,以期平稳度过危险期。其中,部分患者因多种原因而出现不同程度的肢体无力、呼吸肌力量减弱、深反射减弱等症状,对此现象国外学者提出了ICU获得性肌无力(IUCAW)的概念。据报道ICUAW诊断困难、恢复缓慢是导致患者撤机困难、住院时间延长的主要原因之一,对急危重症患者的预后产生了巨大的影响,从社会经济学角度而言也造成了医疗资源的过度消耗。随着电生理学及各种诊断方法的进展,在ICUAW的发病机制及治疗措施等方面均取得了长足的进步。本文将围绕ICUAW的定义及分类、基本特征、病理生理机制、诊断及防治进行概述。

Many critically ill patients or those who experienced complicated operations often need to be treated in the intensive care unit (ICU) to get through the dangerous period. Among them, some patients have diferent degrees of limb weakness, weakness of respiratory muscle strength, diminished deep tendon reflex and other symptoms for a variety of reasons, and the concept of ICU-acquired weakness (ICUAW) has been proposed for this phenomenon by some researchers. It is reported that the difficulty in diagnosis of ICUAW and its slowly recovery are main reasons leading to the difficulty of weaning and prolonged hospitalization, which have a great impact on the positive prognosis of critically ill patients. What’s more, it also causes the excessive consumption of medical resources from the perspective of social economics. With the progress of electrophysiology and various diagnostic methods, considerable progress has been made in the pathogenesis and treatment of ICUAW. This article will make an overview focusing on the definition and classification, basic features, pathophysiological mechanisms, diagnosis and prevention of ICUAW.

[1]
Ali NA,O'Brien JM Jr,Hoffmann SP, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients[J]. Am J Respir Crit Care Med, 2008, 178(3): 261-268.
[2]
Sharshar T,Bastuji-Garin S,Stevens RD, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality[J]. Crit Care Med, 2009, 37(12): 3047-3053.
[3]
De Jonghe B,Sharshar T,Lefaucheur JP, et al. Paresis acquired in the intensive care unit: a prospective multicenter study[J]. JAMA, 2002. 288(22): 2859-2867.
[4]
Mirzakhani H,Williams JN,Mello J, et al. Muscle weakness predicts pharyngeal dysfunction and symptomatic aspiration in long-term ventilated patients[J]. Anesthesiology, 2013, 119: 389-397.
[5]
Nanas S,Kritikos K,Angelopoulos E, et al. Predisposing factors for critical illness polyneuromyopathy in a multidisciplinary intensive care unit[J]. Acta Neurol Scand, 2008, 118(3): 175-181.
[6]
Hermans G,Van Mechelen H,Clerckx B, et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis[J]. Am J Respir Crit Care Med, 2014, 190(4): 410-420.
[7]
Tzanis G,Vasileiadis I,Zervakis D, et al. Maximum inspiratory pressure, a surrogate parameter for the assessment of ICU-acquired weakness[J]. BMC Anesthesiol, 2011, 11: 14.
[8]
Fan E,Cheek F,Chlan L, et al. An official American Thoracic Society Clinical Practice guideline: the diagnosis of intensive care unit-acquired weakness in adults[J]. Am J Respir Crit Care Med, 2014, 190(12): 1437-1446.
[9]
Stevens RD,Marshall SA,Cornblath DR, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness[J]. Crit Care Med, 2009, 37(10 Suppl): S299-308.
[10]
Kress JP,Hall JB. ICU-acquired weakness and recovery from critical illness[J]. N Engl J Med, 2014, 371(3): 287-288.
[11]
NICE-SUGAR Study Investigators, Finfer S,Liu B, et al. Hypoglycemia and risk of death in critically ill patients[J]. N Engl J Med, 2012, 367(12): 1108-1118.
[12]
Latronico N,Fenzi F,Recupero D, et al. Critical illness myopathy and neuropathy[J]. Lancet, 1996, 347(9015): 1579-1582.
[13]
Hermans G,Van den Berghe G. Clinical review: intensive care unit acquired weakness[J]. Crit Care, 2015, 19: 274.
[14]
Van den Berghe G,Schoonheydt K,Becx P, et al. Insulin therapy protects the central and peripheral nervous system of intensive care patients[J]. Neurology, 2005, 64(8): 1348-1353.
[15]
Bolton CF. Neuromuscular manifestations of critical illness[J]. Muscle Nerve, 2005, 32(2): 140-163.
[16]
Rich MM,Pinter MJ. Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy[J]. J Physiol, 2003, 547(Pt 2): 555-566.
[17]
Garnacho-Montero J,Madrazo-Osuna J,García-Garmendia JL, et al. Critical illness polyneuropathy: risk factors and clinical consequences: a cohort study in septic patients[J]. Intensive Care Med, 2001, 27(8): 1288-1296.
[18]
Carre JE,Orban JC,Re L, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis[J]. Am J Respir Crit Care Med, 2010, 182(6): 745-751.
[19]
Reid MB,Moylan JS. Beyond atrophy: redox mechanisms of muscle dysfunction in chronic inflammatory disease[J]. J Physiol, 2011, 589(Pt 9): 2171-2179.
[20]
Powers SK,Shanely RA,Coombes JS, et al. Mechanical ventilation results in progressive contractile dysfunction in the diaphragm[J]. J Appl Physiol (1985), 2002, 92(5): 1851-1858.
[21]
Levine S,Nguyen T,Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans[J]. N Engl J Med, 2008, 358(13): 1327-1335.
[22]
Jaber S,Petrof BJ,Jung B, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans[J]. Am J Respir Crit Care Med, 2011, 183(3): 364-371.
[23]
Levine S,Biswas C,Dierov J, et al. Increased proteolysis, myosin depletion, and atrophic AKT-FOXO signaling in human diaphragm disuse[J]. Am J Respir Crit Care Med, 2011, 183(4): 483-490.
[24]
Griffiths RD,Palmer TE,Helliwell T, et al. Effect of passive stretching on the wasting of muscle in the critically ill[J]. Nutrition, 1995, 11(5): 428-432.
[25]
Hermans G,Clerckx B,Vanhullebusch T, et al. Interobserver agreement of Medical Research Council sum-score and handgrip strength in the intensive care unit[J]. Muscle Nerve, 2012, 45(1): 18-25.
[26]
Latronico N,Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis[J]. Lancet Neurol, 2011, 10(10): 931-941.
[27]
Weber-Carstens S,Koch S,Spuler S, et al. Nonexcitable muscle membrane predicts intensive care unit-acquired paresis in mechanically ventilated, sedated patients[J]. Crit Care Med, 2009, 37(9): 2632-2637.
[28]
Wieske L,Witteveen E,Petzold A, et al. Neurofilaments as a plasma biomarker for ICU-acquired weakness:an observational pilot study[J]. Crit Care, 2014, 18(1): R18.
[29]
NICE-SUGAR Study Investigators, Finfer S,Chittock DR, et al. Intensive versus conventional glucose control in critically ill patients[J]. N Engl J Med, 2009, 360(13): 1283-1297.
[30]
Reade MC,Finfer S. Sedation and delirium in intensive care[J]. N Engl J Med, 2014, 370(16): 1567.
[31]
Burtin C,Clerckx B,Robbeets C, et al. Early exercise in critically ill patients enhances short-term functional recovery[J]. Crit Care Med, 2009, 37(9): 2499-2505.
[32]
Patel BK,Pohlman AS,Hall JB, et al. Impact of early mobilization on glycemic control and ICU-acquired weakness in critically ill patients who are mechanically ventilated[J]. Chest, 2014, 146(3): 583-589.
[33]
Maffiuletti NA,Roig M,Karatzanos E, et al. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review[J]. BMC Med, 2013, 11: 137.
[34]
Puthucheary ZA,Rawal J,McPhail M, et al. Acute skeletal muscle wasting in critical illness[J]. JAMA, 2013, 310(15): 1591-1600.
[35]
Hermans G,Casaer MP,Clerckx B, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial[J]. Lancet Respir Med, 2013, 1(8): 621-629.
[36]
Needham DM,Dinglas VD,Bienvenu OJ, et al. One year outcomes in patients with acute lung injury randomised to initial trophic or full enteral feeding: prospective follow-up of EDEN randomised trial[J]. BMJ, 2013, 346: f1532.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[3] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[4] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[5] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[6] 赵静. 高频超声对腹股沟斜疝的诊断价值研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 575-578.
[7] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[8] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[9] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[10] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[11] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[12] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[13] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[14] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[15] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
阅读次数
全文


摘要