切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2015, Vol. 01 ›› Issue (06) : 26 -33. doi: 10.3877/cma.j.issn.2095-9141.2015.06.008

所属专题: 文献

基础研究

啮齿动物上皮祖细胞与生物材料水凝胶生物相容性的体外研究
薛杉1, 吴钢2, 罗诗雨3, 张鹏4, 张洪钿4, 法志强1, 郭燕舞1, 柯以铨1, 徐如祥4,()   
  1. 1. 510282 广州,南方医科大学珠江医院神经外科,神经外科研究所
    2. 广东省脑功能修复和再生重点实验室南方医科大学珠江医院肿瘤中心
    3. 南方医科大学第二临床学院
    4. 100700 北京,北京军区总医院附属八一脑科医院
  • 收稿日期:2015-07-10 出版日期:2015-12-15
  • 通信作者: 徐如祥
  • 基金资助:
    国家自然科学基金(u0632008、30801184、30772232、30500526、81501046); 广东省自然科学基金(S2011040003565)

Compatibility of rodent epithelial progenitor cells with biomaterial hydrogels in vitro

Shan Xue1, Gang Wu2, Shiyu Luo3, Peng Zhang4, Hongtian Zhang4, Zhiqiang Fa1, Yanwu Guo1, Yiquan Ke1, Ruxiang Xu4,()   

  1. 1. Department of Neurosurgery, Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong Province, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
    2. Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
    3. Second Clinical College of Southern Medical University, Guangzhou 510282, China
    4. The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing 100700, China
  • Received:2015-07-10 Published:2015-12-15
  • Corresponding author: Ruxiang Xu
  • About author:
    Corresponding author: Xu Ruxiang, Email:
引用本文:

薛杉, 吴钢, 罗诗雨, 张鹏, 张洪钿, 法志强, 郭燕舞, 柯以铨, 徐如祥. 啮齿动物上皮祖细胞与生物材料水凝胶生物相容性的体外研究[J]. 中华神经创伤外科电子杂志, 2015, 01(06): 26-33.

Shan Xue, Gang Wu, Shiyu Luo, Peng Zhang, Hongtian Zhang, Zhiqiang Fa, Yanwu Guo, Yiquan Ke, Ruxiang Xu. Compatibility of rodent epithelial progenitor cells with biomaterial hydrogels in vitro[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2015, 01(06): 26-33.

目的

体外检测培养细胞与生物工程水凝胶材料的相互影响,为体外培养细胞与生物工程水凝胶共移植治疗提供理论依据。

方法

选择两款不同组分的水凝胶Matrigel和PuraMatrix作为实验材料,以EPCs作为检测细胞,将EPCs培养于不同浓度的Matrigel(10%、20%、30%)或PuraMatrix(0.25%、0.5%、1%)表面,或与不同浓度的Matrigel或PuraMatrix混悬培养,于培养的不同时间观察培养细胞的形态,并用Alamar Blue法检测细胞的增殖情况,以确定材料的细胞毒性。观察EPCs在水凝胶中的成管化状态,以检测细胞是否仍具有生理功能。

结果

三种浓度Matrigel中30%的Matrigel细胞毒性较大,而三种浓度的PuraMatrix中1%的PuraMatrix细胞毒性较大。EPCs培养于Matrigel表面较混悬其中的细胞增殖率高,而且此差异随Matrigel的浓度增高而增强。EPCs在20%和30%的Matrigel表面培养均能成管化,在10%的Matrigel表面和混悬其中培养7 d,多数细胞沉底。20%的Matrigel中培养7 d能够立体成管化。而30%的Matrigel中,EPCs仅能伸出少数突起,不能成管化。PuraMatrix在0.25%和0.5%的浓度时,EPCs培养于PuraMatrix表面与细胞混悬其中的细胞增殖率相比无明显差异;而在1%时EPCs培养于PuraMatrix表面和混悬其中存活率均很低。EPCs在0.25%和0.5%的PuraMatrix表面培养,细胞能够穿入PuraMatrix中。而在0.25%的PuraMatrix中培养细胞可附着于材料上,但较难成管化,0.5%的PuraMatrix中培养7 d能够成管化。三种细胞密度相比,107个/ml的细胞密度EPCs更容易体外成管化。

结论

Matrigel和PuraMatrix在适当的浓度(20% Matrigel和0.5% PuraMatrix)均能与培养细胞良好的相容,并且起到支撑作用,模拟正常生理状态,给细胞提供一个三维生长环境。由于PuraMatrix为人工合成肽产物,降解产物无毒性,可能是更适合移植的生物材料。

Objective

To test the interaction of in vitro cultured cells and biological engineering hydrogel materials, providing theoretical basis for the treatment strategy of in vitro cultured cells and biological engineering hydrogel transplantation.

Methods

Two different components hydrogel Matrigel and PuraMatrix were used as experimental material, and EPCs derived as previous method used as detecting cells. At different concentrations of Matrigel (10%, 20%, 30%) or PuraMatrix (1%, 0.5%, 0.25%), EPCs were cultivated on surface or within the hydrogels. Observe the morphology and detect cell proliferation by Alamar Blue method in different time to determine the cytotoxicity of hydrogel materials. Observe the in vitro angiogenesis ability of EPCs to detect whether cells still have physiological function.

Results

three concentrations of Matrigel, 30% Matrigel is highest cytotoxicity. Among three PuraMatrix concentration, 1% PuraMatrix is highest cytotoxicity. The cell proliferation rate of EPCs training on surface of Matrigel is high than suspension in Matrigel, and the difference between these two training mode enhanced while the concentration of Matrigel increased. The in vitro angiogenesis ability of EPCs was observed on 20% and 30% Matrigel surface. EPCs descended to the bottom when cultured in or on surface of 10% Matrigel 7 days. The in vitro angiogenesis ability of EPCs was observed in 20% Matrigel, but in 30% Matrigel, EPCs only stretch minority pustute. The cell proliferation rates were no significant differences when EPCs training on surface of or in 0.25% and 0.5% PuraMatrix. But when EPCs training on surface of or in 1% PuraMatrix, the survival rate of cell is very low. EPCs can migrat in 0.25% and 0.5% PuraMatrix when cultured on surface. But in 0.25% PuraMatrix, EPCs attached to the material, but had difficult to perform in vitro angiogenesis. The in vitro angiogenesis ability of EPCs was observed in 0.5% PuraMatrix. Among three densitys of EPCs, density of 107 cell/ml in vitro angiogenesis are more easily. In the hydrogel.

Conclusion

Matrigel and PuraMatrix in the appropriate concentration (20%) and 0.5% have good compatibility with EPCs and NSCs, and can serve as support, imitate physiological condition, to provide a three-dimensional cell growth environment, non-toxic degradation products, may be more suitable for transplantation treatment.

表1 Matrigel的细胞毒性(±sn=3)
表2 PuraMatrix的细胞毒性(±sn=3)
图1 10%Matrigel中EPCs沉于底部,平面生长(×200)
图2 Matrigel中细胞生长情况
图3 EPCs与PuraMatrix共培养情况
表3 20%Matrigel和0.5%PuraMatrix中的不同密度细胞的增殖情况(±sn=3)
图4 EPCs以1×107个/ml密度接种于20%Matrigel中形成的网格状微管系统
图5 EPCs以1×107个/ml密度接种于0.5%PuraMatrix中形成的网格状微管系统
图6 光镜下观察NSCs在水凝胶中培养有细胞迁移出神经球,并且细胞形态有改变,细胞伸出突起
[1]
Holmes TC, de Lacalle S, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling pep-tide scaffolds[J]. Proc Natl Acad Sci USA, 2000, 97(12): 6728-6733.
[2]
Chen J, Zhang Z, Liu J, et al. Acellular spinal cord scaffold seeded with bone marrow stromal cells protects tissue and promotes functional recovery in spinal cord-injured rats[J]. J Neurosci Res, 2014, 92(3): 307-317.
[3]
Ritfeld GJ, Nandoe Tewarie RD, Vajn K, et al. Bone marrow stromal cell-mediated tissue sparing enhances functional repair after spinal cord contusion in adult rats[J]. Cell Transplant, 2012, 21(7): 1561-1575.
[4]
Binan L, Tendey C, De Crescenzo G, et al. Differentiation of neuronal stem cells into motor neurons using electrospun poly-l-lactic acid/gelatin scaffold[J]. Biomaterials, 2014, 35(2): 664-674.
[5]
Novikova LN, Novikov LN, Kellerth JO. Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury, Current opinion in neurology[J]. 2003, 16(6): 711-715.
[6]
Uemura M, Refaat MM, Shinoyama M, et al. Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell-derived neural precursor cells[J]. J Neurosci Res, 2010, 88(3): 542-551.
[7]
Zhang S, Holmes TC, DiPersio CM, et al. Self-complementary oligopeptide matrices support mammalian cell attachment[J]. Biomaterials, 1995, 16(18): 1385-1393.
[8]
Yan Y, Liu Y, Liu D, et al. Differentiation of adipose-derived adult stem cells into epithelial-like stem cells[J]. Ann Anat, 2013, 195(3): 212-218.
[9]
Thonhoff JR, Lou DI, Jordan PM, et al. Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro[J]. Brain Res, 2008, 1187(6): 42-51.
[10]
Nectow AR, Marra KG, Kaplan DL. Biomaterials for the development of peripheral nerve guidance conduits[J]. Tissue Eng Part B Rev, 2011, 18(1): 40-50.
[11]
Quigley AF, Bulluss KJ, Kyratzis IL, et al. Engineering a multimodal nerve conduit for repair of injured peripheral nerve[J]. J Neural Eng, 2013, 10(1): 016008.
[12]
Ouyang Y, Huang C, Zhu Y, et al. Fabrication of seamless electrospun collagen/plga conduits whose walls comprise highly longitu- dinal aligned nanofibers for nerve regeneration[J]. J Biomed Nanotechnol, 2013, 9(6): 931-943.
[13]
Narmoneva DA, Oni O, Sieminski AL, et al. Self-assembling short oligopeptides and the promotion of angiogenesis[J]. Biomaterials, 2005, 26(23): 4837-4846.
[14]
Cavalcanti BN, Zeitlin BD, Nör JE. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells[J]. Dental Mater, 2013, 29(1): 97-102.
[15]
Aizawa Y, Shoichet MS. The role of endothelial cells in the retinal stem and progenitor cell niche within a 3d engineered hydrogel matrix[J]. Biomaterials, 2012, 33(21): 5198-5205.
[16]
Sakai S, Inagaki H, Liu Y, et al. Rapidly serum-degradable hydrogel templating fabrication of spherical tissues and curved tubular structures[J]. Biotechnol Bioeng, 2012, 109(11): 2911-2919.
[17]
Sun G, Shen YI, Kusuma S, et al. Functional neovascularization of biodegradable dextran hy-drogels with multiple angiogenic growth factors[J]. Biomaterials, 2011, 32(1): 95-106.
[18]
Du Y, Ghodousi M, Qi H, et al. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels[J]. Biotechnol Bioeng, 2011, 108(7): 1693-1703.
[19]
Panorchan P, Lee JS, Kole TP, et al. Microrheology and rock signaling of human endothelial cells embedded in a 3d matrix[J]. Biophys J, 2006, 91(9): 3499-3507.
[20]
Albrecht PJ, Dahl JP, Stoltzfus OK, et al. Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival[J]. Exp Neurol, 2002, 173(1): 46-62.
[21]
Flanagan LA, Rebaza LM, Derzic S, et al. Regulation of human neural precursor cells by laminin and integrins[J]. J Neurosci Res, 2006, 83(5): 845-856.
[22]
Katakowski M, Zhang Z, deCarvalho AC, et al. EphB2 induces proliferation and promotes a neuronal fate in adult subventricular neural precursor cells[J]. Neurosci Lett, 2005, 385(3): 204-209.
[23]
Wu P, Tarasenko YI, Gu Y, et al. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat[J]. Nat Neurosci, 2002, 5(12): 1271-1278.
[1] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[2] 于承浩, 张益, 陈进利, 戚超, 李海峰, 于腾波. 肩袖补片在巨大肩袖损伤治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2021, 15(02): 225-230.
[3] 黄晓罡, 牛东升, 闫香果, 张克松, 何军民, 王晓军, 刘媛媛. 局部应用重组人Ⅲ型胶原蛋白水凝胶对糖尿病患者创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 430-434.
[4] 王晟, 许卓然, 夏德萌, 李磊, 许硕贵. 穿皮骨整合截肢假体与上皮细胞生长迁移的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 166-169.
[5] 王智忠, 刘利华, 曹强, 查天建, 张娜, 禹学彬, 刘小龙. 水凝胶联合藻酸盐银敷料在面部深Ⅱ度烧伤创面治疗中的应用研究[J]. 中华损伤与修复杂志(电子版), 2021, 16(01): 50-54.
[6] 孙莉莉, 李晓强, 张明, 朱健, 黄佃. 非编码RNAs调控内皮祖细胞对静脉血栓的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 181-185.
[7] 李婧娴, 韩兴龙, 涂元媛, 胡士军, 于淼, 雷伟. 内皮祖细胞在血管损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 176-180.
[8] 陈龙, 董兵, 刘晓玲, 何江, 余冰波, 罗丽芳, 夏文豪. 内皮祖细胞靶向归巢的双模态成像活体示踪研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 351-357.
[9] 夏杰, 唐紫萌, 吴向未. E-钙黏蛋白对血管内皮祖细胞和骨髓间充质干细胞之间的黏附作用研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 343-350.
[10] 于茜, 周建辉, 赵小淋, 谢大洋, 曹雪莹. 血液净化膜材料的临床发展[J]. 中华肾病研究电子杂志, 2021, 10(02): 103-108.
[11] 魏雪娇, 张洋洋, 朱晓宇, 黄秀, 姜丽丽, 赵丹, 龙梦团, 杜玉君. 从细胞角度探讨毛细血管稀疏与肾间质纤维化[J]. 中华肾病研究电子杂志, 2020, 09(03): 124-126.
[12] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
[13] 李欣达. 同轴水凝胶制造技术在神经再生中的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(03): 180-182.
[14] 葛校永, 李亚华, 李宗明, 周子鹤, 吴昆鹏, 李一帆, 韩新巍, 任克伟. 新型温敏性水凝胶在经导管动脉化疗栓塞中的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(03): 268-274.
[15] 马晓瑭, 李婵娣, 李嘉辉, 许小冰. 高表达microRNA-17的内皮祖细胞外泌体对糖尿病缺血性脑卒中的治疗作用[J]. 中华脑血管病杂志(电子版), 2022, 16(04): 263-274.
阅读次数
全文


摘要